Computing the Schultz polynomials and indices for ladder related graphs

Abstract Distance is an important graph invariant that has wide applications in computing science and other fields of sciences. A topological index is a genuine number connected with compound constitution indicating for relationship of compound structure with different physical properties, synthetic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ahmad,Ali
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000501081
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000501081
record_format dspace
spelling oai:scielo:S0716-091720190005010812020-01-07Computing the Schultz polynomials and indices for ladder related graphsAhmad,Ali Distance Topological indices Schultz indices Schultz polynomial Abstract Distance is an important graph invariant that has wide applications in computing science and other fields of sciences. A topological index is a genuine number connected with compound constitution indicating for relationship of compound structure with different physical properties, synthetic reactivity or natural action. The Schultz and modified Schultz polynomials and their corresponding indices are used in synthetic graph theory as in light of vertex degrees. In this paper, the Schultz and modified Schultz polynomials and their corresponding indices for Mongolian tent graph, diamond graph and double fan are determined.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.5 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000501081en10.22199/issn.0717-6279-2019-05-0070
institution Scielo Chile
collection Scielo Chile
language English
topic Distance
Topological indices
Schultz indices
Schultz polynomial
spellingShingle Distance
Topological indices
Schultz indices
Schultz polynomial
Ahmad,Ali
Computing the Schultz polynomials and indices for ladder related graphs
description Abstract Distance is an important graph invariant that has wide applications in computing science and other fields of sciences. A topological index is a genuine number connected with compound constitution indicating for relationship of compound structure with different physical properties, synthetic reactivity or natural action. The Schultz and modified Schultz polynomials and their corresponding indices are used in synthetic graph theory as in light of vertex degrees. In this paper, the Schultz and modified Schultz polynomials and their corresponding indices for Mongolian tent graph, diamond graph and double fan are determined.
author Ahmad,Ali
author_facet Ahmad,Ali
author_sort Ahmad,Ali
title Computing the Schultz polynomials and indices for ladder related graphs
title_short Computing the Schultz polynomials and indices for ladder related graphs
title_full Computing the Schultz polynomials and indices for ladder related graphs
title_fullStr Computing the Schultz polynomials and indices for ladder related graphs
title_full_unstemmed Computing the Schultz polynomials and indices for ladder related graphs
title_sort computing the schultz polynomials and indices for ladder related graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000501081
work_keys_str_mv AT ahmadali computingtheschultzpolynomialsandindicesforladderrelatedgraphs
_version_ 1718439862343827456