(p, q)-Lucas polynomials and their applications to bi-univalent functions

Abstract In the present paper, by using the L p,q,n (x) functions, our methodology intertwine to yield the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Altınkaya,Şahsene, Yalçın,Sibel
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000501093
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000501093
record_format dspace
spelling oai:scielo:S0716-091720190005010932020-01-07(p, q)-Lucas polynomials and their applications to bi-univalent functionsAltınkaya,ŞahseneYalçın,Sibel (p, q)-Lucas polynomials Coefficient bounds Bi-univalent functions Abstract In the present paper, by using the L p,q,n (x) functions, our methodology intertwine to yield the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined through the (p, q)-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain Fekete-Szegö problem for this new function class.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.5 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000501093en10.22199/issn.0717-6279-2019-05-0071
institution Scielo Chile
collection Scielo Chile
language English
topic (p, q)-Lucas polynomials
Coefficient bounds
Bi-univalent functions
spellingShingle (p, q)-Lucas polynomials
Coefficient bounds
Bi-univalent functions
Altınkaya,Şahsene
Yalçın,Sibel
(p, q)-Lucas polynomials and their applications to bi-univalent functions
description Abstract In the present paper, by using the L p,q,n (x) functions, our methodology intertwine to yield the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined through the (p, q)-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain Fekete-Szegö problem for this new function class.
author Altınkaya,Şahsene
Yalçın,Sibel
author_facet Altınkaya,Şahsene
Yalçın,Sibel
author_sort Altınkaya,Şahsene
title (p, q)-Lucas polynomials and their applications to bi-univalent functions
title_short (p, q)-Lucas polynomials and their applications to bi-univalent functions
title_full (p, q)-Lucas polynomials and their applications to bi-univalent functions
title_fullStr (p, q)-Lucas polynomials and their applications to bi-univalent functions
title_full_unstemmed (p, q)-Lucas polynomials and their applications to bi-univalent functions
title_sort (p, q)-lucas polynomials and their applications to bi-univalent functions
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000501093
work_keys_str_mv AT alt305nkaya350ahsene pqlucaspolynomialsandtheirapplicationstobiunivalentfunctions
AT yalc305nsibel pqlucaspolynomialsandtheirapplicationstobiunivalentfunctions
_version_ 1718439862604922880