(p, q)-Lucas polynomials and their applications to bi-univalent functions
Abstract In the present paper, by using the L p,q,n (x) functions, our methodology intertwine to yield the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined th...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000501093 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000501093 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190005010932020-01-07(p, q)-Lucas polynomials and their applications to bi-univalent functionsAltınkaya,ŞahseneYalçın,Sibel (p, q)-Lucas polynomials Coefficient bounds Bi-univalent functions Abstract In the present paper, by using the L p,q,n (x) functions, our methodology intertwine to yield the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined through the (p, q)-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain Fekete-Szegö problem for this new function class.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.5 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000501093en10.22199/issn.0717-6279-2019-05-0071 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
(p, q)-Lucas polynomials Coefficient bounds Bi-univalent functions |
spellingShingle |
(p, q)-Lucas polynomials Coefficient bounds Bi-univalent functions Altınkaya,Şahsene Yalçın,Sibel (p, q)-Lucas polynomials and their applications to bi-univalent functions |
description |
Abstract In the present paper, by using the L p,q,n (x) functions, our methodology intertwine to yield the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined through the (p, q)-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain Fekete-Szegö problem for this new function class. |
author |
Altınkaya,Şahsene Yalçın,Sibel |
author_facet |
Altınkaya,Şahsene Yalçın,Sibel |
author_sort |
Altınkaya,Şahsene |
title |
(p, q)-Lucas polynomials and their applications to bi-univalent functions |
title_short |
(p, q)-Lucas polynomials and their applications to bi-univalent functions |
title_full |
(p, q)-Lucas polynomials and their applications to bi-univalent functions |
title_fullStr |
(p, q)-Lucas polynomials and their applications to bi-univalent functions |
title_full_unstemmed |
(p, q)-Lucas polynomials and their applications to bi-univalent functions |
title_sort |
(p, q)-lucas polynomials and their applications to bi-univalent functions |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000501093 |
work_keys_str_mv |
AT alt305nkaya350ahsene pqlucaspolynomialsandtheirapplicationstobiunivalentfunctions AT yalc305nsibel pqlucaspolynomialsandtheirapplicationstobiunivalentfunctions |
_version_ |
1718439862604922880 |