Zk-Magic Labeling of Star of Graphs

Abstract For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A − {0} such that, the vertex labeling f + defined as f + (v) = Pf(uv) taken over all edges uv incident at v is a constant. An A-magic graph G is s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P., Daisy,K. Jeya
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100031
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A − {0} such that, the vertex labeling f + defined as f + (v) = Pf(uv) taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Z k -magic graph if the group A is Z k , the group of integers modulo k and these graphs are referred to as k-magic graphs. In this paper we prove that the graphs such as star of cycle, flower, double wheel, shell, cylinder, gear, generalised Jahangir, lotus inside a circle, wheel, closed helm graph are Z k -magic graphs.