Zk-Magic Labeling of Star of Graphs
Abstract For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A − {0} such that, the vertex labeling f + defined as f + (v) = Pf(uv) taken over all edges uv incident at v is a constant. An A-magic graph G is s...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100031 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000100031 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200001000312020-02-18Zk-Magic Labeling of Star of GraphsJeyanthi,P.Daisy,K. Jeya A-magic labeling Flower Double wheel Shell Cylinder Gear Generalised Jahangir Lotus inside a circle Wheel Closed helm graph Abstract For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A − {0} such that, the vertex labeling f + defined as f + (v) = Pf(uv) taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Z k -magic graph if the group A is Z k , the group of integers modulo k and these graphs are referred to as k-magic graphs. In this paper we prove that the graphs such as star of cycle, flower, double wheel, shell, cylinder, gear, generalised Jahangir, lotus inside a circle, wheel, closed helm graph are Z k -magic graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.1 20202020-02-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100031en10.22199/issn.0717-6279-2020-01-0003 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
A-magic labeling Flower Double wheel Shell Cylinder Gear Generalised Jahangir Lotus inside a circle Wheel Closed helm graph |
spellingShingle |
A-magic labeling Flower Double wheel Shell Cylinder Gear Generalised Jahangir Lotus inside a circle Wheel Closed helm graph Jeyanthi,P. Daisy,K. Jeya Zk-Magic Labeling of Star of Graphs |
description |
Abstract For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A − {0} such that, the vertex labeling f + defined as f + (v) = Pf(uv) taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Z k -magic graph if the group A is Z k , the group of integers modulo k and these graphs are referred to as k-magic graphs. In this paper we prove that the graphs such as star of cycle, flower, double wheel, shell, cylinder, gear, generalised Jahangir, lotus inside a circle, wheel, closed helm graph are Z k -magic graphs. |
author |
Jeyanthi,P. Daisy,K. Jeya |
author_facet |
Jeyanthi,P. Daisy,K. Jeya |
author_sort |
Jeyanthi,P. |
title |
Zk-Magic Labeling of Star of Graphs |
title_short |
Zk-Magic Labeling of Star of Graphs |
title_full |
Zk-Magic Labeling of Star of Graphs |
title_fullStr |
Zk-Magic Labeling of Star of Graphs |
title_full_unstemmed |
Zk-Magic Labeling of Star of Graphs |
title_sort |
zk-magic labeling of star of graphs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100031 |
work_keys_str_mv |
AT jeyanthip zkmagiclabelingofstarofgraphs AT daisykjeya zkmagiclabelingofstarofgraphs |
_version_ |
1718439863390306304 |