Weak convergence and weak compactness in the space of integrable functions with respect to a vector measure

Abstract We consider weak convergence and weak compactness in the space L1(m) of real valued integrable functions with respect to a Banach space valued measure m equipped with its natural norm. We give necessary and sufficient conditions for a sequence in L1(m) to be weak Cauchy, and we give necessa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Swartz,Charles
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100123
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We consider weak convergence and weak compactness in the space L1(m) of real valued integrable functions with respect to a Banach space valued measure m equipped with its natural norm. We give necessary and sufficient conditions for a sequence in L1(m) to be weak Cauchy, and we give necessary and sufficient conditions for a subset of L1(m) to be conditionally sequentially weakly compact.