A cryptography method based on hyperbolicbalancing and Lucas-balancing functions

Abstract The goal is to study a new class of hyperbolic functions that unite the characteristics of the classical hyperbolic functions and the recurring balancing and Lucas-balancing numbers. These functions are indeed the extension of Binet formulas for both balancing and Lucas-balancing numbers in...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Ray,Prasanta Kumar
Langue:English
Publié: Universidad Católica del Norte, Departamento de Matemáticas 2020
Sujets:
Accès en ligne:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100135
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract The goal is to study a new class of hyperbolic functions that unite the characteristics of the classical hyperbolic functions and the recurring balancing and Lucas-balancing numbers. These functions are indeed the extension of Binet formulas for both balancing and Lucas-balancing numbers in continuous domain. Some identities concerning hyperbolic balancing and Lucas-balancing functions are also established. Further, a new class of square matrices, a generalization of balancing QB-matrices for continuous domain, is considered. These matrices indeed enable us to develop a cryptography method for secrecy purpose.