A cryptography method based on hyperbolicbalancing and Lucas-balancing functions

Abstract The goal is to study a new class of hyperbolic functions that unite the characteristics of the classical hyperbolic functions and the recurring balancing and Lucas-balancing numbers. These functions are indeed the extension of Binet formulas for both balancing and Lucas-balancing numbers in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ray,Prasanta Kumar
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100135
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000100135
record_format dspace
spelling oai:scielo:S0716-091720200001001352020-02-18A cryptography method based on hyperbolicbalancing and Lucas-balancing functionsRay,Prasanta Kumar Balancing numbers Lucas-balancing numbers Hyperbolic balancing functions Hyperbolic Lucas-balancing functions Cryptography Abstract The goal is to study a new class of hyperbolic functions that unite the characteristics of the classical hyperbolic functions and the recurring balancing and Lucas-balancing numbers. These functions are indeed the extension of Binet formulas for both balancing and Lucas-balancing numbers in continuous domain. Some identities concerning hyperbolic balancing and Lucas-balancing functions are also established. Further, a new class of square matrices, a generalization of balancing QB-matrices for continuous domain, is considered. These matrices indeed enable us to develop a cryptography method for secrecy purpose.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.1 20202020-02-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100135en10.22199/issn.0717-6279-2020-01-0009
institution Scielo Chile
collection Scielo Chile
language English
topic Balancing numbers
Lucas-balancing numbers
Hyperbolic balancing functions
Hyperbolic Lucas-balancing functions
Cryptography
spellingShingle Balancing numbers
Lucas-balancing numbers
Hyperbolic balancing functions
Hyperbolic Lucas-balancing functions
Cryptography
Ray,Prasanta Kumar
A cryptography method based on hyperbolicbalancing and Lucas-balancing functions
description Abstract The goal is to study a new class of hyperbolic functions that unite the characteristics of the classical hyperbolic functions and the recurring balancing and Lucas-balancing numbers. These functions are indeed the extension of Binet formulas for both balancing and Lucas-balancing numbers in continuous domain. Some identities concerning hyperbolic balancing and Lucas-balancing functions are also established. Further, a new class of square matrices, a generalization of balancing QB-matrices for continuous domain, is considered. These matrices indeed enable us to develop a cryptography method for secrecy purpose.
author Ray,Prasanta Kumar
author_facet Ray,Prasanta Kumar
author_sort Ray,Prasanta Kumar
title A cryptography method based on hyperbolicbalancing and Lucas-balancing functions
title_short A cryptography method based on hyperbolicbalancing and Lucas-balancing functions
title_full A cryptography method based on hyperbolicbalancing and Lucas-balancing functions
title_fullStr A cryptography method based on hyperbolicbalancing and Lucas-balancing functions
title_full_unstemmed A cryptography method based on hyperbolicbalancing and Lucas-balancing functions
title_sort cryptography method based on hyperbolicbalancing and lucas-balancing functions
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100135
work_keys_str_mv AT rayprasantakumar acryptographymethodbasedonhyperbolicbalancingandlucasbalancingfunctions
AT rayprasantakumar cryptographymethodbasedonhyperbolicbalancingandlucasbalancingfunctions
_version_ 1718439865125699584