A cryptography method based on hyperbolicbalancing and Lucas-balancing functions
Abstract The goal is to study a new class of hyperbolic functions that unite the characteristics of the classical hyperbolic functions and the recurring balancing and Lucas-balancing numbers. These functions are indeed the extension of Binet formulas for both balancing and Lucas-balancing numbers in...
Guardado en:
Autor principal: | Ray,Prasanta Kumar |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100135 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
SQUARES IN EULER TRIPLES FROM FIBONACCI AND LUCAS NUMBERS
por: Čerin,Zvonko
Publicado: (2013) -
Matrix representation of the q-Jacobsthal numbers
por: Cerda-Morales,Gamaliel
Publicado: (2012) -
Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions
por: Bagul,Yogesh J., et al.
Publicado: (2019) -
(p, q)-Lucas polynomials and their applications to bi-univalent functions
por: Altınkaya,Şahsene, et al.
Publicado: (2019) -
Dual third-order Jacobsthal quaternions
por: Cerda-Morales,Gamaliel
Publicado: (2018)