Lie symmetry analysis and traveling wave solutions of equal width wave equation

Abstract We obtained the power series solution and the traveling wave solutions of equal width wave equation by using the Lie symmetry method. The fundamental idea behind the symmetry transformation method is that it reduces one independent variables in a system of PDEs by utilizing Lie symmetries...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chauhan,Antim, Arora,Rajan, Tomar,Amit
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100179
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000100179
record_format dspace
spelling oai:scielo:S0716-091720200001001792020-02-18Lie symmetry analysis and traveling wave solutions of equal width wave equationChauhan,AntimArora,RajanTomar,Amit Equal width wave (EWW) equation Lie symmetry analysis method Power series solutions Tanh method Symbolic computation Abstract We obtained the power series solution and the traveling wave solutions of equal width wave equation by using the Lie symmetry method. The fundamental idea behind the symmetry transformation method is that it reduces one independent variables in a system of PDEs by utilizing Lie symmetries and surface invariance condition. We first obtained the infinitesimals and commutation table with the help of MAPLE software. Lie symmetry transformation method (STM) has been applied on EWW equation and converted it into various nonlinear ODEs. Then, the tanh method and the power series method have been applied for solving the reduced nonlinear ordinary differential equations (ODEs). Convergence of the power series solutions has also been shown.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.1 20202020-02-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100179en10.22199/issn.0717-6279-2020-01-0012
institution Scielo Chile
collection Scielo Chile
language English
topic Equal width wave (EWW) equation
Lie symmetry analysis method
Power series solutions
Tanh method
Symbolic computation
spellingShingle Equal width wave (EWW) equation
Lie symmetry analysis method
Power series solutions
Tanh method
Symbolic computation
Chauhan,Antim
Arora,Rajan
Tomar,Amit
Lie symmetry analysis and traveling wave solutions of equal width wave equation
description Abstract We obtained the power series solution and the traveling wave solutions of equal width wave equation by using the Lie symmetry method. The fundamental idea behind the symmetry transformation method is that it reduces one independent variables in a system of PDEs by utilizing Lie symmetries and surface invariance condition. We first obtained the infinitesimals and commutation table with the help of MAPLE software. Lie symmetry transformation method (STM) has been applied on EWW equation and converted it into various nonlinear ODEs. Then, the tanh method and the power series method have been applied for solving the reduced nonlinear ordinary differential equations (ODEs). Convergence of the power series solutions has also been shown.
author Chauhan,Antim
Arora,Rajan
Tomar,Amit
author_facet Chauhan,Antim
Arora,Rajan
Tomar,Amit
author_sort Chauhan,Antim
title Lie symmetry analysis and traveling wave solutions of equal width wave equation
title_short Lie symmetry analysis and traveling wave solutions of equal width wave equation
title_full Lie symmetry analysis and traveling wave solutions of equal width wave equation
title_fullStr Lie symmetry analysis and traveling wave solutions of equal width wave equation
title_full_unstemmed Lie symmetry analysis and traveling wave solutions of equal width wave equation
title_sort lie symmetry analysis and traveling wave solutions of equal width wave equation
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100179
work_keys_str_mv AT chauhanantim liesymmetryanalysisandtravelingwavesolutionsofequalwidthwaveequation
AT arorarajan liesymmetryanalysisandtravelingwavesolutionsofequalwidthwaveequation
AT tomaramit liesymmetryanalysisandtravelingwavesolutionsofequalwidthwaveequation
_version_ 1718439865919471616