Hermite-Hadamard type fractional integral inequalities for products of two MT (r;g,m,φ)- preinvex functions

Abstract A new class of MT (r;g,m,φ)- preinvex functions is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving products of two MT (r;g,m,φ)- preinvex functions are given. Moreover, some generalizations of Hermit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kashuri,Artion, Liko,Rozana
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100219
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A new class of MT (r;g,m,φ)- preinvex functions is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving products of two MT (r;g,m,φ)- preinvex functions are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for products of two MT (r;g,m,φ)- preinvex functions via Riemann-Liouville fractional integrals are established. These general inequalities give us some new estimates for the left-hand side of Gauss-Jacobi type quadrature formula and Hermite-Hadamard type fractional integral inequalities. At the end, some conclusions and future research are given.