Hermite-Hadamard type fractional integral inequalities for products of two MT (r;g,m,φ)- preinvex functions
Abstract A new class of MT (r;g,m,φ)- preinvex functions is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving products of two MT (r;g,m,φ)- preinvex functions are given. Moreover, some generalizations of Hermit...
Guardado en:
Autores principales: | Kashuri,Artion, Liko,Rozana |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100219 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hermite-Hadamard type fractional integral inequalities for generalized beta ( r , g )-preinvex functions
por: Kashuri,Artion, et al.
Publicado: (2017) -
Generalizations of Hermite-Hadamard and Ostrowski type inequalities for MTm-preinvex functions
por: Kashuri,Artion, et al.
Publicado: (2017) -
Some new Ostrowski type fractional integral inequalities for generalized (s,m, φ)-preinvex functions via Caputo k -fractional derivatives
por: Kashuri,Artion, et al.
Publicado: (2018) -
Some new Ostrowski type fractional integral inequalities for generalized relative semi-(r; m, h)-preinvex mappings via Caputo k -fractional derivatives
por: Kashuri,Artion, et al.
Publicado: (2019) -
Companions of Hermite-Hadamard Inequality for Convex Functions (II)
por: Dragomir,S. S., et al.
Publicado: (2014)