Furter common local spectral properties for bounded linear operators

Abstract We study common local spectral properties for bounded linear operators A ∈ ℒ(X,Y) and B,C ∈ ℒ (Y,X) such that A(BA) 2 =ABACA=ACABA=(AC) 2 A. We prove that AC and BA share the single valued extension property, the Bishop property (β), the p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zguitti,Hassane
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100243
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000100243
record_format dspace
spelling oai:scielo:S0716-091720200001002432020-02-18Furter common local spectral properties for bounded linear operatorsZguitti,Hassane Jacobson's lemma Common properties Local spectral theory. Abstract We study common local spectral properties for bounded linear operators A ∈ ℒ(X,Y) and B,C ∈ ℒ (Y,X) such that A(BA) 2 =ABACA=ACABA=(AC) 2 A. We prove that AC and BA share the single valued extension property, the Bishop property (β), the property (β ε ), the decomposition property (δ) and decomposability. Closedness of analytic core and quasinilpotent part are also investigated. Some applications to Fredholm operators are given.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.1 20202020-02-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100243en10.22199/issn.0717-6279-2020-01-0015
institution Scielo Chile
collection Scielo Chile
language English
topic Jacobson's lemma
Common properties
Local spectral theory.
spellingShingle Jacobson's lemma
Common properties
Local spectral theory.
Zguitti,Hassane
Furter common local spectral properties for bounded linear operators
description Abstract We study common local spectral properties for bounded linear operators A ∈ ℒ(X,Y) and B,C ∈ ℒ (Y,X) such that A(BA) 2 =ABACA=ACABA=(AC) 2 A. We prove that AC and BA share the single valued extension property, the Bishop property (β), the property (β ε ), the decomposition property (δ) and decomposability. Closedness of analytic core and quasinilpotent part are also investigated. Some applications to Fredholm operators are given.
author Zguitti,Hassane
author_facet Zguitti,Hassane
author_sort Zguitti,Hassane
title Furter common local spectral properties for bounded linear operators
title_short Furter common local spectral properties for bounded linear operators
title_full Furter common local spectral properties for bounded linear operators
title_fullStr Furter common local spectral properties for bounded linear operators
title_full_unstemmed Furter common local spectral properties for bounded linear operators
title_sort furter common local spectral properties for bounded linear operators
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100243
work_keys_str_mv AT zguittihassane furtercommonlocalspectralpropertiesforboundedlinearoperators
_version_ 1718439866879967232