Furter common local spectral properties for bounded linear operators
Abstract We study common local spectral properties for bounded linear operators A ∈ ℒ(X,Y) and B,C ∈ ℒ (Y,X) such that A(BA) 2 =ABACA=ACABA=(AC) 2 A. We prove that AC and BA share the single valued extension property, the Bishop property (β), the p...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100243 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000100243 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200001002432020-02-18Furter common local spectral properties for bounded linear operatorsZguitti,Hassane Jacobson's lemma Common properties Local spectral theory. Abstract We study common local spectral properties for bounded linear operators A ∈ ℒ(X,Y) and B,C ∈ ℒ (Y,X) such that A(BA) 2 =ABACA=ACABA=(AC) 2 A. We prove that AC and BA share the single valued extension property, the Bishop property (β), the property (β ε ), the decomposition property (δ) and decomposability. Closedness of analytic core and quasinilpotent part are also investigated. Some applications to Fredholm operators are given.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.1 20202020-02-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100243en10.22199/issn.0717-6279-2020-01-0015 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Jacobson's lemma Common properties Local spectral theory. |
spellingShingle |
Jacobson's lemma Common properties Local spectral theory. Zguitti,Hassane Furter common local spectral properties for bounded linear operators |
description |
Abstract We study common local spectral properties for bounded linear operators A ∈ ℒ(X,Y) and B,C ∈ ℒ (Y,X) such that A(BA) 2 =ABACA=ACABA=(AC) 2 A. We prove that AC and BA share the single valued extension property, the Bishop property (β), the property (β ε ), the decomposition property (δ) and decomposability. Closedness of analytic core and quasinilpotent part are also investigated. Some applications to Fredholm operators are given. |
author |
Zguitti,Hassane |
author_facet |
Zguitti,Hassane |
author_sort |
Zguitti,Hassane |
title |
Furter common local spectral properties for bounded linear operators |
title_short |
Furter common local spectral properties for bounded linear operators |
title_full |
Furter common local spectral properties for bounded linear operators |
title_fullStr |
Furter common local spectral properties for bounded linear operators |
title_full_unstemmed |
Furter common local spectral properties for bounded linear operators |
title_sort |
furter common local spectral properties for bounded linear operators |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000100243 |
work_keys_str_mv |
AT zguittihassane furtercommonlocalspectralpropertiesforboundedlinearoperators |
_version_ |
1718439866879967232 |