Restricted triangular difference mean graphs
Abstract Let G = (V,E) be a graph with p vertices and q edges. Consider an injection f : V (G) → {1, 2, 3, ..., pq}. Define f∗ : E(G) → {T 1 , T 2 , T 3 , ..., T q }, where T q is the q th triangular number such that f∗(e) = for all edges e = uv. If f&am...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200275 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Let G = (V,E) be a graph with p vertices and q edges. Consider an injection f : V (G) → {1, 2, 3, ..., pq}. Define f∗ : E(G) → {T 1 , T 2 , T 3 , ..., T q }, where T q is the q th triangular number such that f∗(e) = for all edges e = uv. If f∗(E(G)) is a sequence of consecutive triangular numbers T 1 , T 2 , T 3 , ..., T q , then the function f is said to be restricted triangular difference mean. A graph that admits restricted triangular difference mean labeling is called restricted triangular difference mean graph. In this paper, we investigate restricted triangular difference mean behaviour of some standard graph. |
---|