Restricted triangular difference mean graphs
Abstract Let G = (V,E) be a graph with p vertices and q edges. Consider an injection f : V (G) → {1, 2, 3, ..., pq}. Define f∗ : E(G) → {T 1 , T 2 , T 3 , ..., T q }, where T q is the q th triangular number such that f∗(e) = for all edges e = uv. If f&am...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200275 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000200275 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200002002752020-05-06Restricted triangular difference mean graphsJeyanthi,P.Selvi,M.Ramya,D. Restricted triangular difference mean labeling Abstract Let G = (V,E) be a graph with p vertices and q edges. Consider an injection f : V (G) → {1, 2, 3, ..., pq}. Define f∗ : E(G) → {T 1 , T 2 , T 3 , ..., T q }, where T q is the q th triangular number such that f∗(e) = for all edges e = uv. If f∗(E(G)) is a sequence of consecutive triangular numbers T 1 , T 2 , T 3 , ..., T q , then the function f is said to be restricted triangular difference mean. A graph that admits restricted triangular difference mean labeling is called restricted triangular difference mean graph. In this paper, we investigate restricted triangular difference mean behaviour of some standard graph.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.2 20202020-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200275en10.22199/issn.0717-6279-2020-02-0017 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Restricted triangular difference mean labeling |
spellingShingle |
Restricted triangular difference mean labeling Jeyanthi,P. Selvi,M. Ramya,D. Restricted triangular difference mean graphs |
description |
Abstract Let G = (V,E) be a graph with p vertices and q edges. Consider an injection f : V (G) → {1, 2, 3, ..., pq}. Define f∗ : E(G) → {T 1 , T 2 , T 3 , ..., T q }, where T q is the q th triangular number such that f∗(e) = for all edges e = uv. If f∗(E(G)) is a sequence of consecutive triangular numbers T 1 , T 2 , T 3 , ..., T q , then the function f is said to be restricted triangular difference mean. A graph that admits restricted triangular difference mean labeling is called restricted triangular difference mean graph. In this paper, we investigate restricted triangular difference mean behaviour of some standard graph. |
author |
Jeyanthi,P. Selvi,M. Ramya,D. |
author_facet |
Jeyanthi,P. Selvi,M. Ramya,D. |
author_sort |
Jeyanthi,P. |
title |
Restricted triangular difference mean graphs |
title_short |
Restricted triangular difference mean graphs |
title_full |
Restricted triangular difference mean graphs |
title_fullStr |
Restricted triangular difference mean graphs |
title_full_unstemmed |
Restricted triangular difference mean graphs |
title_sort |
restricted triangular difference mean graphs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200275 |
work_keys_str_mv |
AT jeyanthip restrictedtriangulardifferencemeangraphs AT selvim restrictedtriangulardifferencemeangraphs AT ramyad restrictedtriangulardifferencemeangraphs |
_version_ |
1718439867418935296 |