Statistical convergence of complex uncertain sequences defined by Orlicz function

Abstract Complex uncertain variables are measurable functions from an uncertainty space to the set of complex numbers and are used to model complex uncertain quantities. This paper introduces the statistical convergence concepts of complex uncertain sequences: statistical convergence almost surely(a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nath,Pankaj Kumar, Tripathy,Binod Chandra
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200301
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Complex uncertain variables are measurable functions from an uncertainty space to the set of complex numbers and are used to model complex uncertain quantities. This paper introduces the statistical convergence concepts of complex uncertain sequences: statistical convergence almost surely(a.s.), statistical convergence in measure, statistical convergence in mean, statistical convergence in distribution and statistical convergence uniformly almost surely sequences of complex uncertain sequences defined by Orlicz function. In addition, Decomposition Theorems and relationships among them are discussed.