Statistical convergence of complex uncertain sequences defined by Orlicz function
Abstract Complex uncertain variables are measurable functions from an uncertainty space to the set of complex numbers and are used to model complex uncertain quantities. This paper introduces the statistical convergence concepts of complex uncertain sequences: statistical convergence almost surely(a...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200301 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000200301 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200002003012020-05-06Statistical convergence of complex uncertain sequences defined by Orlicz functionNath,Pankaj KumarTripathy,Binod Chandra Uncertainty theory Complex uncertain variable Statistical convergence Abstract Complex uncertain variables are measurable functions from an uncertainty space to the set of complex numbers and are used to model complex uncertain quantities. This paper introduces the statistical convergence concepts of complex uncertain sequences: statistical convergence almost surely(a.s.), statistical convergence in measure, statistical convergence in mean, statistical convergence in distribution and statistical convergence uniformly almost surely sequences of complex uncertain sequences defined by Orlicz function. In addition, Decomposition Theorems and relationships among them are discussed.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.2 20202020-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200301en10.22199/issn.0717-6279-2020-02-0019 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Uncertainty theory Complex uncertain variable Statistical convergence |
spellingShingle |
Uncertainty theory Complex uncertain variable Statistical convergence Nath,Pankaj Kumar Tripathy,Binod Chandra Statistical convergence of complex uncertain sequences defined by Orlicz function |
description |
Abstract Complex uncertain variables are measurable functions from an uncertainty space to the set of complex numbers and are used to model complex uncertain quantities. This paper introduces the statistical convergence concepts of complex uncertain sequences: statistical convergence almost surely(a.s.), statistical convergence in measure, statistical convergence in mean, statistical convergence in distribution and statistical convergence uniformly almost surely sequences of complex uncertain sequences defined by Orlicz function. In addition, Decomposition Theorems and relationships among them are discussed. |
author |
Nath,Pankaj Kumar Tripathy,Binod Chandra |
author_facet |
Nath,Pankaj Kumar Tripathy,Binod Chandra |
author_sort |
Nath,Pankaj Kumar |
title |
Statistical convergence of complex uncertain sequences defined by Orlicz function |
title_short |
Statistical convergence of complex uncertain sequences defined by Orlicz function |
title_full |
Statistical convergence of complex uncertain sequences defined by Orlicz function |
title_fullStr |
Statistical convergence of complex uncertain sequences defined by Orlicz function |
title_full_unstemmed |
Statistical convergence of complex uncertain sequences defined by Orlicz function |
title_sort |
statistical convergence of complex uncertain sequences defined by orlicz function |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200301 |
work_keys_str_mv |
AT nathpankajkumar statisticalconvergenceofcomplexuncertainsequencesdefinedbyorliczfunction AT tripathybinodchandra statisticalconvergenceofcomplexuncertainsequencesdefinedbyorliczfunction |
_version_ |
1718439867951611904 |