Prime rings with involution involving left multipliers

Abstract Let R be a prime ring of characteristic different from 2 with involution ’∗’ of the second kind and n ≥ 1 be a fixed positive integer. In the present paper it is shown that if R admits nonzero left multipliers S and T , then the following conditions a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Boua,Abdelkarim, Ashraf,Mohammad
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200341
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Let R be a prime ring of characteristic different from 2 with involution ’∗’ of the second kind and n ≥ 1 be a fixed positive integer. In the present paper it is shown that if R admits nonzero left multipliers S and T , then the following conditions are equivalent: (i)R is commutative, (ii) Tn([x, x∗]) ∈ Z(R) for all x ∈ R; (iii) Tn(x ◦ x∗) ∈ Z(R) for all x ∈ R; (iv) [S(x), T (x∗)] ∈ Z(R) for all x ∈ R; (v) [S(x), T (x∗)] − (x ◦ x∗) ∈ Z(R) for all x ∈ R; (vi) S(x) ◦ T (x∗) ∈ Z(R) for all x ∈ R; (vii) S(x) ◦ T (x∗) − [x, x∗] ∈ Z(R) for all x ∈ R. The existence of hypotheses in various theorems have been justified by the examples.