Prime rings with involution involving left multipliers
Abstract Let R be a prime ring of characteristic different from 2 with involution ’∗’ of the second kind and n ≥ 1 be a fixed positive integer. In the present paper it is shown that if R admits nonzero left multipliers S and T , then the following conditions a...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200341 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000200341 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200002003412020-05-06Prime rings with involution involving left multipliersBoua,AbdelkarimAshraf,Mohammad Prime ring Derivation Multiplier Involution Commutativity Abstract Let R be a prime ring of characteristic different from 2 with involution ’∗’ of the second kind and n ≥ 1 be a fixed positive integer. In the present paper it is shown that if R admits nonzero left multipliers S and T , then the following conditions are equivalent: (i)R is commutative, (ii) Tn([x, x∗]) ∈ Z(R) for all x ∈ R; (iii) Tn(x ◦ x∗) ∈ Z(R) for all x ∈ R; (iv) [S(x), T (x∗)] ∈ Z(R) for all x ∈ R; (v) [S(x), T (x∗)] − (x ◦ x∗) ∈ Z(R) for all x ∈ R; (vi) S(x) ◦ T (x∗) ∈ Z(R) for all x ∈ R; (vii) S(x) ◦ T (x∗) − [x, x∗] ∈ Z(R) for all x ∈ R. The existence of hypotheses in various theorems have been justified by the examples.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.2 20202020-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200341en10.22199/issn.0717-6279-2020-02-0021 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Prime ring Derivation Multiplier Involution Commutativity |
spellingShingle |
Prime ring Derivation Multiplier Involution Commutativity Boua,Abdelkarim Ashraf,Mohammad Prime rings with involution involving left multipliers |
description |
Abstract Let R be a prime ring of characteristic different from 2 with involution ’∗’ of the second kind and n ≥ 1 be a fixed positive integer. In the present paper it is shown that if R admits nonzero left multipliers S and T , then the following conditions are equivalent: (i)R is commutative, (ii) Tn([x, x∗]) ∈ Z(R) for all x ∈ R; (iii) Tn(x ◦ x∗) ∈ Z(R) for all x ∈ R; (iv) [S(x), T (x∗)] ∈ Z(R) for all x ∈ R; (v) [S(x), T (x∗)] − (x ◦ x∗) ∈ Z(R) for all x ∈ R; (vi) S(x) ◦ T (x∗) ∈ Z(R) for all x ∈ R; (vii) S(x) ◦ T (x∗) − [x, x∗] ∈ Z(R) for all x ∈ R. The existence of hypotheses in various theorems have been justified by the examples. |
author |
Boua,Abdelkarim Ashraf,Mohammad |
author_facet |
Boua,Abdelkarim Ashraf,Mohammad |
author_sort |
Boua,Abdelkarim |
title |
Prime rings with involution involving left multipliers |
title_short |
Prime rings with involution involving left multipliers |
title_full |
Prime rings with involution involving left multipliers |
title_fullStr |
Prime rings with involution involving left multipliers |
title_full_unstemmed |
Prime rings with involution involving left multipliers |
title_sort |
prime rings with involution involving left multipliers |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200341 |
work_keys_str_mv |
AT bouaabdelkarim primeringswithinvolutioninvolvingleftmultipliers AT ashrafmohammad primeringswithinvolutioninvolvingleftmultipliers |
_version_ |
1718439868487434240 |