Prime rings with involution involving left multipliers

Abstract Let R be a prime ring of characteristic different from 2 with involution ’∗’ of the second kind and n ≥ 1 be a fixed positive integer. In the present paper it is shown that if R admits nonzero left multipliers S and T , then the following conditions a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Boua,Abdelkarim, Ashraf,Mohammad
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200341
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000200341
record_format dspace
spelling oai:scielo:S0716-091720200002003412020-05-06Prime rings with involution involving left multipliersBoua,AbdelkarimAshraf,Mohammad Prime ring Derivation Multiplier Involution Commutativity Abstract Let R be a prime ring of characteristic different from 2 with involution ’∗’ of the second kind and n ≥ 1 be a fixed positive integer. In the present paper it is shown that if R admits nonzero left multipliers S and T , then the following conditions are equivalent: (i)R is commutative, (ii) Tn([x, x∗]) ∈ Z(R) for all x ∈ R; (iii) Tn(x ◦ x∗) ∈ Z(R) for all x ∈ R; (iv) [S(x), T (x∗)] ∈ Z(R) for all x ∈ R; (v) [S(x), T (x∗)] − (x ◦ x∗) ∈ Z(R) for all x ∈ R; (vi) S(x) ◦ T (x∗) ∈ Z(R) for all x ∈ R; (vii) S(x) ◦ T (x∗) − [x, x∗] ∈ Z(R) for all x ∈ R. The existence of hypotheses in various theorems have been justified by the examples.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.2 20202020-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200341en10.22199/issn.0717-6279-2020-02-0021
institution Scielo Chile
collection Scielo Chile
language English
topic Prime ring
Derivation
Multiplier
Involution
Commutativity
spellingShingle Prime ring
Derivation
Multiplier
Involution
Commutativity
Boua,Abdelkarim
Ashraf,Mohammad
Prime rings with involution involving left multipliers
description Abstract Let R be a prime ring of characteristic different from 2 with involution ’∗’ of the second kind and n ≥ 1 be a fixed positive integer. In the present paper it is shown that if R admits nonzero left multipliers S and T , then the following conditions are equivalent: (i)R is commutative, (ii) Tn([x, x∗]) ∈ Z(R) for all x ∈ R; (iii) Tn(x ◦ x∗) ∈ Z(R) for all x ∈ R; (iv) [S(x), T (x∗)] ∈ Z(R) for all x ∈ R; (v) [S(x), T (x∗)] − (x ◦ x∗) ∈ Z(R) for all x ∈ R; (vi) S(x) ◦ T (x∗) ∈ Z(R) for all x ∈ R; (vii) S(x) ◦ T (x∗) − [x, x∗] ∈ Z(R) for all x ∈ R. The existence of hypotheses in various theorems have been justified by the examples.
author Boua,Abdelkarim
Ashraf,Mohammad
author_facet Boua,Abdelkarim
Ashraf,Mohammad
author_sort Boua,Abdelkarim
title Prime rings with involution involving left multipliers
title_short Prime rings with involution involving left multipliers
title_full Prime rings with involution involving left multipliers
title_fullStr Prime rings with involution involving left multipliers
title_full_unstemmed Prime rings with involution involving left multipliers
title_sort prime rings with involution involving left multipliers
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200341
work_keys_str_mv AT bouaabdelkarim primeringswithinvolutioninvolvingleftmultipliers
AT ashrafmohammad primeringswithinvolutioninvolvingleftmultipliers
_version_ 1718439868487434240