Some results on (a, d)-distance antimagic labeling

Abstract Let G = (V,E) be a graph of order N and f : V → {1, 2,...,N} be a bijection. For every vertex v of graph G, we define its weight w(v) as the sum ∑ u∈N(v) f(u), where N(v) denotes the open neighborhood of v. If the set of all vertex weights forms an arithmetic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Patel,S. K., Vasava,Jayesh
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200361
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000200361
record_format dspace
spelling oai:scielo:S0716-091720200002003612020-05-06Some results on (a, d)-distance antimagic labelingPatel,S. K.Vasava,Jayesh Distance magic graphs (a, d)-distance antimagic graphs Circulant graphs Cartesian and corona product of graphs Abstract Let G = (V,E) be a graph of order N and f : V → {1, 2,...,N} be a bijection. For every vertex v of graph G, we define its weight w(v) as the sum ∑ u∈N(v) f(u), where N(v) denotes the open neighborhood of v. If the set of all vertex weights forms an arithmetic progression {a, a + d, a + 2d, . . . , a + (N − 1)d}, then f is called an (a, d)-distance antimagic labeling and the graph G is called (a, d)-distance antimagic graph. In this paper we prove the existence or non-existence of (a, d)- distance antimagic labeling of some well-known graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.2 20202020-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200361en10.22199/issn.0717-6279-2020-02-0022
institution Scielo Chile
collection Scielo Chile
language English
topic Distance magic graphs
(a, d)-distance antimagic graphs
Circulant graphs
Cartesian and corona product of graphs
spellingShingle Distance magic graphs
(a, d)-distance antimagic graphs
Circulant graphs
Cartesian and corona product of graphs
Patel,S. K.
Vasava,Jayesh
Some results on (a, d)-distance antimagic labeling
description Abstract Let G = (V,E) be a graph of order N and f : V → {1, 2,...,N} be a bijection. For every vertex v of graph G, we define its weight w(v) as the sum ∑ u∈N(v) f(u), where N(v) denotes the open neighborhood of v. If the set of all vertex weights forms an arithmetic progression {a, a + d, a + 2d, . . . , a + (N − 1)d}, then f is called an (a, d)-distance antimagic labeling and the graph G is called (a, d)-distance antimagic graph. In this paper we prove the existence or non-existence of (a, d)- distance antimagic labeling of some well-known graphs.
author Patel,S. K.
Vasava,Jayesh
author_facet Patel,S. K.
Vasava,Jayesh
author_sort Patel,S. K.
title Some results on (a, d)-distance antimagic labeling
title_short Some results on (a, d)-distance antimagic labeling
title_full Some results on (a, d)-distance antimagic labeling
title_fullStr Some results on (a, d)-distance antimagic labeling
title_full_unstemmed Some results on (a, d)-distance antimagic labeling
title_sort some results on (a, d)-distance antimagic labeling
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200361
work_keys_str_mv AT patelsk someresultsonaddistanceantimagiclabeling
AT vasavajayesh someresultsonaddistanceantimagiclabeling
_version_ 1718439868713926656