Some results on (a, d)-distance antimagic labeling
Abstract Let G = (V,E) be a graph of order N and f : V → {1, 2,...,N} be a bijection. For every vertex v of graph G, we define its weight w(v) as the sum ∑ u∈N(v) f(u), where N(v) denotes the open neighborhood of v. If the set of all vertex weights forms an arithmetic...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200361 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000200361 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200002003612020-05-06Some results on (a, d)-distance antimagic labelingPatel,S. K.Vasava,Jayesh Distance magic graphs (a, d)-distance antimagic graphs Circulant graphs Cartesian and corona product of graphs Abstract Let G = (V,E) be a graph of order N and f : V → {1, 2,...,N} be a bijection. For every vertex v of graph G, we define its weight w(v) as the sum ∑ u∈N(v) f(u), where N(v) denotes the open neighborhood of v. If the set of all vertex weights forms an arithmetic progression {a, a + d, a + 2d, . . . , a + (N − 1)d}, then f is called an (a, d)-distance antimagic labeling and the graph G is called (a, d)-distance antimagic graph. In this paper we prove the existence or non-existence of (a, d)- distance antimagic labeling of some well-known graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.2 20202020-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200361en10.22199/issn.0717-6279-2020-02-0022 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Distance magic graphs (a, d)-distance antimagic graphs Circulant graphs Cartesian and corona product of graphs |
spellingShingle |
Distance magic graphs (a, d)-distance antimagic graphs Circulant graphs Cartesian and corona product of graphs Patel,S. K. Vasava,Jayesh Some results on (a, d)-distance antimagic labeling |
description |
Abstract Let G = (V,E) be a graph of order N and f : V → {1, 2,...,N} be a bijection. For every vertex v of graph G, we define its weight w(v) as the sum ∑ u∈N(v) f(u), where N(v) denotes the open neighborhood of v. If the set of all vertex weights forms an arithmetic progression {a, a + d, a + 2d, . . . , a + (N − 1)d}, then f is called an (a, d)-distance antimagic labeling and the graph G is called (a, d)-distance antimagic graph. In this paper we prove the existence or non-existence of (a, d)- distance antimagic labeling of some well-known graphs. |
author |
Patel,S. K. Vasava,Jayesh |
author_facet |
Patel,S. K. Vasava,Jayesh |
author_sort |
Patel,S. K. |
title |
Some results on (a, d)-distance antimagic labeling |
title_short |
Some results on (a, d)-distance antimagic labeling |
title_full |
Some results on (a, d)-distance antimagic labeling |
title_fullStr |
Some results on (a, d)-distance antimagic labeling |
title_full_unstemmed |
Some results on (a, d)-distance antimagic labeling |
title_sort |
some results on (a, d)-distance antimagic labeling |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200361 |
work_keys_str_mv |
AT patelsk someresultsonaddistanceantimagiclabeling AT vasavajayesh someresultsonaddistanceantimagiclabeling |
_version_ |
1718439868713926656 |