Non-linear new product A ∗ B − B ∗ A derivations on ∗-algebras
Abstract Let A be a prime ∗-algebra with unit I and a nontrivial projection. Then the map Φ : A → A satisfies in the following condition Φ(A ⋄ B) = Φ(A) ⋄ B + A ⋄ Φ(B) where A⋄ B = A∗B ͨ...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200467 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000200467 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200002004672020-05-06Non-linear new product A ∗ B − B ∗ A derivations on ∗-algebrasTaghavi,A.Razeghi,M. New product derivation: Prime ∗-algebra Additive map Abstract Let A be a prime ∗-algebra with unit I and a nontrivial projection. Then the map Φ : A → A satisfies in the following condition Φ(A ⋄ B) = Φ(A) ⋄ B + A ⋄ Φ(B) where A⋄ B = A∗B −B∗A for all A, B ∈ A, is additive. Moreover, if Φ(αI) is self-adjoint operator for α ∈ {1, i} then Φ is a ∗-derivation.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.2 20202020-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200467en10.22199/issn.0717-6279-2020-02-0029 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
New product derivation: Prime ∗-algebra Additive map |
spellingShingle |
New product derivation: Prime ∗-algebra Additive map Taghavi,A. Razeghi,M. Non-linear new product A ∗ B − B ∗ A derivations on ∗-algebras |
description |
Abstract Let A be a prime ∗-algebra with unit I and a nontrivial projection. Then the map Φ : A → A satisfies in the following condition Φ(A ⋄ B) = Φ(A) ⋄ B + A ⋄ Φ(B) where A⋄ B = A∗B −B∗A for all A, B ∈ A, is additive. Moreover, if Φ(αI) is self-adjoint operator for α ∈ {1, i} then Φ is a ∗-derivation. |
author |
Taghavi,A. Razeghi,M. |
author_facet |
Taghavi,A. Razeghi,M. |
author_sort |
Taghavi,A. |
title |
Non-linear new product A ∗ B − B ∗ A derivations on ∗-algebras |
title_short |
Non-linear new product A ∗ B − B ∗ A derivations on ∗-algebras |
title_full |
Non-linear new product A ∗ B − B ∗ A derivations on ∗-algebras |
title_fullStr |
Non-linear new product A ∗ B − B ∗ A derivations on ∗-algebras |
title_full_unstemmed |
Non-linear new product A ∗ B − B ∗ A derivations on ∗-algebras |
title_sort |
non-linear new product a ∗ b − b ∗ a derivations on ∗-algebras |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000200467 |
work_keys_str_mv |
AT taghavia nonlinearnewproducta8727b8722b8727aderivationson8727algebras AT razeghim nonlinearnewproducta8727b8722b8727aderivationson8727algebras |
_version_ |
1718439870650646528 |