Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity

Abstract: We prove the existence of weak solution u for the nonlinear parabolic systems: which is a Dirichlet Problem. In this system, v belongs to , f and g satisfy some standards continuity and growth conditions. We prove existence of a weak solution of different variants of this system under c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: El Houssine,Azroul, Abdelkrim,Barbara, El Houcine,Rami
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300529
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract: We prove the existence of weak solution u for the nonlinear parabolic systems: which is a Dirichlet Problem. In this system, v belongs to , f and g satisfy some standards continuity and growth conditions. We prove existence of a weak solution of different variants of this system under classical regularity for some growth and coercivity for σ but with only very mild monotonicity assumptions.