Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity
Abstract: We prove the existence of weak solution u for the nonlinear parabolic systems: which is a Dirichlet Problem. In this system, v belongs to , f and g satisfy some standards continuity and growth conditions. We prove existence of a weak solution of different variants of this system under c...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300529 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract: We prove the existence of weak solution u for the nonlinear parabolic systems: which is a Dirichlet Problem. In this system, v belongs to , f and g satisfy some standards continuity and growth conditions. We prove existence of a weak solution of different variants of this system under classical regularity for some growth and coercivity for σ but with only very mild monotonicity assumptions. |
---|