Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity

Abstract: We prove the existence of weak solution u for the nonlinear parabolic systems: which is a Dirichlet Problem. In this system, v belongs to , f and g satisfy some standards continuity and growth conditions. We prove existence of a weak solution of different variants of this system under c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: El Houssine,Azroul, Abdelkrim,Barbara, El Houcine,Rami
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300529
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000300529
record_format dspace
spelling oai:scielo:S0716-091720200003005292020-06-17Existence of solution for some quasilinear parabolic systems with weight and weak monotonicityEl Houssine,AzroulAbdelkrim,BarbaraEl Houcine,Rami Nonlinear paraboliic system Young measure The divcurl type inequality Abstract: We prove the existence of weak solution u for the nonlinear parabolic systems: which is a Dirichlet Problem. In this system, v belongs to , f and g satisfy some standards continuity and growth conditions. We prove existence of a weak solution of different variants of this system under classical regularity for some growth and coercivity for σ but with only very mild monotonicity assumptions.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.3 20202020-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300529en10.22199/issn.0717-6279-2020-03-0033
institution Scielo Chile
collection Scielo Chile
language English
topic Nonlinear paraboliic system
Young measure
The divcurl type inequality
spellingShingle Nonlinear paraboliic system
Young measure
The divcurl type inequality
El Houssine,Azroul
Abdelkrim,Barbara
El Houcine,Rami
Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity
description Abstract: We prove the existence of weak solution u for the nonlinear parabolic systems: which is a Dirichlet Problem. In this system, v belongs to , f and g satisfy some standards continuity and growth conditions. We prove existence of a weak solution of different variants of this system under classical regularity for some growth and coercivity for σ but with only very mild monotonicity assumptions.
author El Houssine,Azroul
Abdelkrim,Barbara
El Houcine,Rami
author_facet El Houssine,Azroul
Abdelkrim,Barbara
El Houcine,Rami
author_sort El Houssine,Azroul
title Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity
title_short Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity
title_full Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity
title_fullStr Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity
title_full_unstemmed Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity
title_sort existence of solution for some quasilinear parabolic systems with weight and weak monotonicity
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300529
work_keys_str_mv AT elhoussineazroul existenceofsolutionforsomequasilinearparabolicsystemswithweightandweakmonotonicity
AT abdelkrimbarbara existenceofsolutionforsomequasilinearparabolicsystemswithweightandweakmonotonicity
AT elhoucinerami existenceofsolutionforsomequasilinearparabolicsystemswithweightandweakmonotonicity
_version_ 1718439871842877440