Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity
Abstract: We prove the existence of weak solution u for the nonlinear parabolic systems: which is a Dirichlet Problem. In this system, v belongs to , f and g satisfy some standards continuity and growth conditions. We prove existence of a weak solution of different variants of this system under c...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300529 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000300529 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200003005292020-06-17Existence of solution for some quasilinear parabolic systems with weight and weak monotonicityEl Houssine,AzroulAbdelkrim,BarbaraEl Houcine,Rami Nonlinear paraboliic system Young measure The divcurl type inequality Abstract: We prove the existence of weak solution u for the nonlinear parabolic systems: which is a Dirichlet Problem. In this system, v belongs to , f and g satisfy some standards continuity and growth conditions. We prove existence of a weak solution of different variants of this system under classical regularity for some growth and coercivity for σ but with only very mild monotonicity assumptions.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.3 20202020-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300529en10.22199/issn.0717-6279-2020-03-0033 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Nonlinear paraboliic system Young measure The divcurl type inequality |
spellingShingle |
Nonlinear paraboliic system Young measure The divcurl type inequality El Houssine,Azroul Abdelkrim,Barbara El Houcine,Rami Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity |
description |
Abstract: We prove the existence of weak solution u for the nonlinear parabolic systems: which is a Dirichlet Problem. In this system, v belongs to , f and g satisfy some standards continuity and growth conditions. We prove existence of a weak solution of different variants of this system under classical regularity for some growth and coercivity for σ but with only very mild monotonicity assumptions. |
author |
El Houssine,Azroul Abdelkrim,Barbara El Houcine,Rami |
author_facet |
El Houssine,Azroul Abdelkrim,Barbara El Houcine,Rami |
author_sort |
El Houssine,Azroul |
title |
Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity |
title_short |
Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity |
title_full |
Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity |
title_fullStr |
Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity |
title_full_unstemmed |
Existence of solution for some quasilinear parabolic systems with weight and weak monotonicity |
title_sort |
existence of solution for some quasilinear parabolic systems with weight and weak monotonicity |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300529 |
work_keys_str_mv |
AT elhoussineazroul existenceofsolutionforsomequasilinearparabolicsystemswithweightandweakmonotonicity AT abdelkrimbarbara existenceofsolutionforsomequasilinearparabolicsystemswithweightandweakmonotonicity AT elhoucinerami existenceofsolutionforsomequasilinearparabolicsystemswithweightandweakmonotonicity |
_version_ |
1718439871842877440 |