The diophantine problem for addition and divisibility for subrings of rational functions over finite fields

Abstract It is shown that the positive existential theory of the structure ℱS = (S−1F[t];=,F, 0, 1,+, |, f ↦ tf), where f ↦ tf is the multiplication by t map, S is non-empty a finite set of irreducible polynomials, and F is a finite field of odd characteristic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cerda-Romero,Leonidas, Martínez-Ranero,Carlos
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300721
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000300721
record_format dspace
spelling oai:scielo:S0716-091720200003007212020-06-17The diophantine problem for addition and divisibility for subrings of rational functions over finite fieldsCerda-Romero,LeonidasMartínez-Ranero,Carlos Positive-existential definability Finite field of odd characteristic Abstract It is shown that the positive existential theory of the structure ℱS = (S−1F[t];=,F, 0, 1,+, |, f ↦ tf), where f ↦ tf is the multiplication by t map, S is non-empty a finite set of irreducible polynomials, and F is a finite field of odd characteristic, is undecidable.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.3 20202020-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300721en10.22199/issn.0717-6279-2020-03-0045
institution Scielo Chile
collection Scielo Chile
language English
topic Positive-existential definability
Finite field of odd characteristic
spellingShingle Positive-existential definability
Finite field of odd characteristic
Cerda-Romero,Leonidas
Martínez-Ranero,Carlos
The diophantine problem for addition and divisibility for subrings of rational functions over finite fields
description Abstract It is shown that the positive existential theory of the structure ℱS = (S−1F[t];=,F, 0, 1,+, |, f ↦ tf), where f ↦ tf is the multiplication by t map, S is non-empty a finite set of irreducible polynomials, and F is a finite field of odd characteristic, is undecidable.
author Cerda-Romero,Leonidas
Martínez-Ranero,Carlos
author_facet Cerda-Romero,Leonidas
Martínez-Ranero,Carlos
author_sort Cerda-Romero,Leonidas
title The diophantine problem for addition and divisibility for subrings of rational functions over finite fields
title_short The diophantine problem for addition and divisibility for subrings of rational functions over finite fields
title_full The diophantine problem for addition and divisibility for subrings of rational functions over finite fields
title_fullStr The diophantine problem for addition and divisibility for subrings of rational functions over finite fields
title_full_unstemmed The diophantine problem for addition and divisibility for subrings of rational functions over finite fields
title_sort diophantine problem for addition and divisibility for subrings of rational functions over finite fields
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000300721
work_keys_str_mv AT cerdaromeroleonidas thediophantineproblemforadditionanddivisibilityforsubringsofrationalfunctionsoverfinitefields
AT martinezranerocarlos thediophantineproblemforadditionanddivisibilityforsubringsofrationalfunctionsoverfinitefields
AT cerdaromeroleonidas diophantineproblemforadditionanddivisibilityforsubringsofrationalfunctionsoverfinitefields
AT martinezranerocarlos diophantineproblemforadditionanddivisibilityforsubringsofrationalfunctionsoverfinitefields
_version_ 1718439874951905280