Rainbow and strong rainbow connection number for some families of graphs

Abstract: Let G be a nontrivial connected graph. Then G is called a rainbow connected graph if there exists a coloring c : E(G) → {1, 2, ..., k}, k ∈ N, of the edges of G, such that there is a u − v rainbow path between every two vertices of G, where a path P in G is a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Khan,Yaqoub Ahmed, Naeem,Muhammad, Siddiqui,Muhammad Kamran, Farahani,Mohammad Reza
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400737
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000400737
record_format dspace
spelling oai:scielo:S0716-091720200004007372020-08-13Rainbow and strong rainbow connection number for some families of graphsKhan,Yaqoub AhmedNaeem,MuhammadSiddiqui,Muhammad KamranFarahani,Mohammad Reza Edge coloring Rainbow coloring Strong rainbow coloring Abstract: Let G be a nontrivial connected graph. Then G is called a rainbow connected graph if there exists a coloring c : E(G) → {1, 2, ..., k}, k ∈ N, of the edges of G, such that there is a u − v rainbow path between every two vertices of G, where a path P in G is a rainbow path if no two edges of P are colored the same. The minimum k for which there exists such a k-edge coloring is the rainbow connection number rc(G) of G. If for every pair u, v of distinct vertices, G contains a rainbow u − v geodesic, then G is called strong rainbow connected. The minimum k for which G is strong rainbow-connected is called the strong rainbow connection number src(G) of G. The exact rc and src of the rotationally symmetric graphs are determined.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.4 20202020-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400737en10.22199/issn.0717-6279-2020-04-0046
institution Scielo Chile
collection Scielo Chile
language English
topic Edge coloring
Rainbow coloring
Strong rainbow coloring
spellingShingle Edge coloring
Rainbow coloring
Strong rainbow coloring
Khan,Yaqoub Ahmed
Naeem,Muhammad
Siddiqui,Muhammad Kamran
Farahani,Mohammad Reza
Rainbow and strong rainbow connection number for some families of graphs
description Abstract: Let G be a nontrivial connected graph. Then G is called a rainbow connected graph if there exists a coloring c : E(G) → {1, 2, ..., k}, k ∈ N, of the edges of G, such that there is a u − v rainbow path between every two vertices of G, where a path P in G is a rainbow path if no two edges of P are colored the same. The minimum k for which there exists such a k-edge coloring is the rainbow connection number rc(G) of G. If for every pair u, v of distinct vertices, G contains a rainbow u − v geodesic, then G is called strong rainbow connected. The minimum k for which G is strong rainbow-connected is called the strong rainbow connection number src(G) of G. The exact rc and src of the rotationally symmetric graphs are determined.
author Khan,Yaqoub Ahmed
Naeem,Muhammad
Siddiqui,Muhammad Kamran
Farahani,Mohammad Reza
author_facet Khan,Yaqoub Ahmed
Naeem,Muhammad
Siddiqui,Muhammad Kamran
Farahani,Mohammad Reza
author_sort Khan,Yaqoub Ahmed
title Rainbow and strong rainbow connection number for some families of graphs
title_short Rainbow and strong rainbow connection number for some families of graphs
title_full Rainbow and strong rainbow connection number for some families of graphs
title_fullStr Rainbow and strong rainbow connection number for some families of graphs
title_full_unstemmed Rainbow and strong rainbow connection number for some families of graphs
title_sort rainbow and strong rainbow connection number for some families of graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400737
work_keys_str_mv AT khanyaqoubahmed rainbowandstrongrainbowconnectionnumberforsomefamiliesofgraphs
AT naeemmuhammad rainbowandstrongrainbowconnectionnumberforsomefamiliesofgraphs
AT siddiquimuhammadkamran rainbowandstrongrainbowconnectionnumberforsomefamiliesofgraphs
AT farahanimohammadreza rainbowandstrongrainbowconnectionnumberforsomefamiliesofgraphs
_version_ 1718439875464658944