Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n

Abstract: The resistance distance (Kirchhoff index and multiplicative Kirchhoff index) and distance-based (Wiener index and Gutman index) graph invariants of Γ n = P 2 ×K n are considered. Firstly by using the decomposition theorem, we procure the Laplacian and Normalized Laplacian spect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sardar,Muhammad Shoaib, Cancan,Murat, Ediz,Süleyman, Sajjad,Wasim
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400919
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000400919
record_format dspace
spelling oai:scielo:S0716-091720200004009192020-08-13Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K nSardar,Muhammad ShoaibCancan,MuratEdiz,SüleymanSajjad,Wasim Kirchhoff index Degree-Kirchhoff index Normalized Laplacian Spanning tree Abstract: The resistance distance (Kirchhoff index and multiplicative Kirchhoff index) and distance-based (Wiener index and Gutman index) graph invariants of Γ n = P 2 ×K n are considered. Firstly by using the decomposition theorem, we procure the Laplacian and Normalized Laplacian spectrum for graph Γ n , respectively. Based on which, we can procured the formulae for the number of spanning trees and some resistance distance and distance-based graph invariants of graph Γ n . Also, it is very interesting to see that when n tends to infinity, Kf (Γ n ) is a polynomial and W (Γ n ) is a quadratic polynomial.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.4 20202020-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400919en10.22199/issn.0717-6279-2020-04-0057
institution Scielo Chile
collection Scielo Chile
language English
topic Kirchhoff index
Degree-Kirchhoff index
Normalized Laplacian
Spanning tree
spellingShingle Kirchhoff index
Degree-Kirchhoff index
Normalized Laplacian
Spanning tree
Sardar,Muhammad Shoaib
Cancan,Murat
Ediz,Süleyman
Sajjad,Wasim
Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n
description Abstract: The resistance distance (Kirchhoff index and multiplicative Kirchhoff index) and distance-based (Wiener index and Gutman index) graph invariants of Γ n = P 2 ×K n are considered. Firstly by using the decomposition theorem, we procure the Laplacian and Normalized Laplacian spectrum for graph Γ n , respectively. Based on which, we can procured the formulae for the number of spanning trees and some resistance distance and distance-based graph invariants of graph Γ n . Also, it is very interesting to see that when n tends to infinity, Kf (Γ n ) is a polynomial and W (Γ n ) is a quadratic polynomial.
author Sardar,Muhammad Shoaib
Cancan,Murat
Ediz,Süleyman
Sajjad,Wasim
author_facet Sardar,Muhammad Shoaib
Cancan,Murat
Ediz,Süleyman
Sajjad,Wasim
author_sort Sardar,Muhammad Shoaib
title Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n
title_short Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n
title_full Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n
title_fullStr Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n
title_full_unstemmed Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n
title_sort some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of p 2 and k n
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400919
work_keys_str_mv AT sardarmuhammadshoaib someresistancedistanceanddistancebasedgraphinvariantsandnumberofspanningtreesinthetensorproductofp2andkn
AT cancanmurat someresistancedistanceanddistancebasedgraphinvariantsandnumberofspanningtreesinthetensorproductofp2andkn
AT edizsuleyman someresistancedistanceanddistancebasedgraphinvariantsandnumberofspanningtreesinthetensorproductofp2andkn
AT sajjadwasim someresistancedistanceanddistancebasedgraphinvariantsandnumberofspanningtreesinthetensorproductofp2andkn
_version_ 1718439878318882816