Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n
Abstract: The resistance distance (Kirchhoff index and multiplicative Kirchhoff index) and distance-based (Wiener index and Gutman index) graph invariants of Γ n = P 2 ×K n are considered. Firstly by using the decomposition theorem, we procure the Laplacian and Normalized Laplacian spect...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400919 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000400919 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200004009192020-08-13Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K nSardar,Muhammad ShoaibCancan,MuratEdiz,SüleymanSajjad,Wasim Kirchhoff index Degree-Kirchhoff index Normalized Laplacian Spanning tree Abstract: The resistance distance (Kirchhoff index and multiplicative Kirchhoff index) and distance-based (Wiener index and Gutman index) graph invariants of Γ n = P 2 ×K n are considered. Firstly by using the decomposition theorem, we procure the Laplacian and Normalized Laplacian spectrum for graph Γ n , respectively. Based on which, we can procured the formulae for the number of spanning trees and some resistance distance and distance-based graph invariants of graph Γ n . Also, it is very interesting to see that when n tends to infinity, Kf (Γ n ) is a polynomial and W (Γ n ) is a quadratic polynomial.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.4 20202020-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400919en10.22199/issn.0717-6279-2020-04-0057 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Kirchhoff index Degree-Kirchhoff index Normalized Laplacian Spanning tree |
spellingShingle |
Kirchhoff index Degree-Kirchhoff index Normalized Laplacian Spanning tree Sardar,Muhammad Shoaib Cancan,Murat Ediz,Süleyman Sajjad,Wasim Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n |
description |
Abstract: The resistance distance (Kirchhoff index and multiplicative Kirchhoff index) and distance-based (Wiener index and Gutman index) graph invariants of Γ n = P 2 ×K n are considered. Firstly by using the decomposition theorem, we procure the Laplacian and Normalized Laplacian spectrum for graph Γ n , respectively. Based on which, we can procured the formulae for the number of spanning trees and some resistance distance and distance-based graph invariants of graph Γ n . Also, it is very interesting to see that when n tends to infinity, Kf (Γ n ) is a polynomial and W (Γ n ) is a quadratic polynomial. |
author |
Sardar,Muhammad Shoaib Cancan,Murat Ediz,Süleyman Sajjad,Wasim |
author_facet |
Sardar,Muhammad Shoaib Cancan,Murat Ediz,Süleyman Sajjad,Wasim |
author_sort |
Sardar,Muhammad Shoaib |
title |
Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n |
title_short |
Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n |
title_full |
Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n |
title_fullStr |
Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n |
title_full_unstemmed |
Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P 2 and K n |
title_sort |
some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of p 2 and k n |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400919 |
work_keys_str_mv |
AT sardarmuhammadshoaib someresistancedistanceanddistancebasedgraphinvariantsandnumberofspanningtreesinthetensorproductofp2andkn AT cancanmurat someresistancedistanceanddistancebasedgraphinvariantsandnumberofspanningtreesinthetensorproductofp2andkn AT edizsuleyman someresistancedistanceanddistancebasedgraphinvariantsandnumberofspanningtreesinthetensorproductofp2andkn AT sajjadwasim someresistancedistanceanddistancebasedgraphinvariantsandnumberofspanningtreesinthetensorproductofp2andkn |
_version_ |
1718439878318882816 |