Type IV codes over a non-local non-unital ring

Abstract: There is a local ring H of order 4, without identity for the multiplication, defined by generators and relations as H =〈a, b | 2a = 2b = 0, a 2 = 0, b 2 = b, ab = ba = 0〉. We classify self orthogonal codes of length n and size 2 n (called here quasi self-dual codes o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alahmadi,Adel, Alkathiry,Amani, Altassan,Alaa, Basaffar,Widyan, Bonnecaze,Alexis, Shoaib,Hatoon, Solé,Patrick
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400963
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract: There is a local ring H of order 4, without identity for the multiplication, defined by generators and relations as H =〈a, b | 2a = 2b = 0, a 2 = 0, b 2 = b, ab = ba = 0〉. We classify self orthogonal codes of length n and size 2 n (called here quasi self-dual codes or QSD) up to the length n = 6. In particular, we classify quasi Type IV codes (a subclass of Type IV codes, viz QSD codes with even weights) up to n = 6.