Type IV codes over a non-local non-unital ring

Abstract: There is a local ring H of order 4, without identity for the multiplication, defined by generators and relations as H =〈a, b | 2a = 2b = 0, a 2 = 0, b 2 = b, ab = ba = 0〉. We classify self orthogonal codes of length n and size 2 n (called here quasi self-dual codes o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alahmadi,Adel, Alkathiry,Amani, Altassan,Alaa, Basaffar,Widyan, Bonnecaze,Alexis, Shoaib,Hatoon, Solé,Patrick
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400963
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000400963
record_format dspace
spelling oai:scielo:S0716-091720200004009632020-08-13Type IV codes over a non-local non-unital ringAlahmadi,AdelAlkathiry,AmaniAltassan,AlaaBasaffar,WidyanBonnecaze,AlexisShoaib,HatoonSolé,Patrick Non-unital rings Semi-local rings Self-orthogonal codes Type IV codes Modular lattices Abstract: There is a local ring H of order 4, without identity for the multiplication, defined by generators and relations as H =〈a, b | 2a = 2b = 0, a 2 = 0, b 2 = b, ab = ba = 0〉. We classify self orthogonal codes of length n and size 2 n (called here quasi self-dual codes or QSD) up to the length n = 6. In particular, we classify quasi Type IV codes (a subclass of Type IV codes, viz QSD codes with even weights) up to n = 6.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.4 20202020-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400963en10.22199/issn.0717-6279-2020-04-0060
institution Scielo Chile
collection Scielo Chile
language English
topic Non-unital rings
Semi-local rings
Self-orthogonal codes
Type IV codes
Modular lattices
spellingShingle Non-unital rings
Semi-local rings
Self-orthogonal codes
Type IV codes
Modular lattices
Alahmadi,Adel
Alkathiry,Amani
Altassan,Alaa
Basaffar,Widyan
Bonnecaze,Alexis
Shoaib,Hatoon
Solé,Patrick
Type IV codes over a non-local non-unital ring
description Abstract: There is a local ring H of order 4, without identity for the multiplication, defined by generators and relations as H =〈a, b | 2a = 2b = 0, a 2 = 0, b 2 = b, ab = ba = 0〉. We classify self orthogonal codes of length n and size 2 n (called here quasi self-dual codes or QSD) up to the length n = 6. In particular, we classify quasi Type IV codes (a subclass of Type IV codes, viz QSD codes with even weights) up to n = 6.
author Alahmadi,Adel
Alkathiry,Amani
Altassan,Alaa
Basaffar,Widyan
Bonnecaze,Alexis
Shoaib,Hatoon
Solé,Patrick
author_facet Alahmadi,Adel
Alkathiry,Amani
Altassan,Alaa
Basaffar,Widyan
Bonnecaze,Alexis
Shoaib,Hatoon
Solé,Patrick
author_sort Alahmadi,Adel
title Type IV codes over a non-local non-unital ring
title_short Type IV codes over a non-local non-unital ring
title_full Type IV codes over a non-local non-unital ring
title_fullStr Type IV codes over a non-local non-unital ring
title_full_unstemmed Type IV codes over a non-local non-unital ring
title_sort type iv codes over a non-local non-unital ring
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400963
work_keys_str_mv AT alahmadiadel typeivcodesoveranonlocalnonunitalring
AT alkathiryamani typeivcodesoveranonlocalnonunitalring
AT altassanalaa typeivcodesoveranonlocalnonunitalring
AT basaffarwidyan typeivcodesoveranonlocalnonunitalring
AT bonnecazealexis typeivcodesoveranonlocalnonunitalring
AT shoaibhatoon typeivcodesoveranonlocalnonunitalring
AT solepatrick typeivcodesoveranonlocalnonunitalring
_version_ 1718439879071760384