Type IV codes over a non-local non-unital ring
Abstract: There is a local ring H of order 4, without identity for the multiplication, defined by generators and relations as H =〈a, b | 2a = 2b = 0, a 2 = 0, b 2 = b, ab = ba = 0〉. We classify self orthogonal codes of length n and size 2 n (called here quasi self-dual codes o...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400963 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000400963 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200004009632020-08-13Type IV codes over a non-local non-unital ringAlahmadi,AdelAlkathiry,AmaniAltassan,AlaaBasaffar,WidyanBonnecaze,AlexisShoaib,HatoonSolé,Patrick Non-unital rings Semi-local rings Self-orthogonal codes Type IV codes Modular lattices Abstract: There is a local ring H of order 4, without identity for the multiplication, defined by generators and relations as H =〈a, b | 2a = 2b = 0, a 2 = 0, b 2 = b, ab = ba = 0〉. We classify self orthogonal codes of length n and size 2 n (called here quasi self-dual codes or QSD) up to the length n = 6. In particular, we classify quasi Type IV codes (a subclass of Type IV codes, viz QSD codes with even weights) up to n = 6.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.4 20202020-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400963en10.22199/issn.0717-6279-2020-04-0060 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Non-unital rings Semi-local rings Self-orthogonal codes Type IV codes Modular lattices |
spellingShingle |
Non-unital rings Semi-local rings Self-orthogonal codes Type IV codes Modular lattices Alahmadi,Adel Alkathiry,Amani Altassan,Alaa Basaffar,Widyan Bonnecaze,Alexis Shoaib,Hatoon Solé,Patrick Type IV codes over a non-local non-unital ring |
description |
Abstract: There is a local ring H of order 4, without identity for the multiplication, defined by generators and relations as H =〈a, b | 2a = 2b = 0, a 2 = 0, b 2 = b, ab = ba = 0〉. We classify self orthogonal codes of length n and size 2 n (called here quasi self-dual codes or QSD) up to the length n = 6. In particular, we classify quasi Type IV codes (a subclass of Type IV codes, viz QSD codes with even weights) up to n = 6. |
author |
Alahmadi,Adel Alkathiry,Amani Altassan,Alaa Basaffar,Widyan Bonnecaze,Alexis Shoaib,Hatoon Solé,Patrick |
author_facet |
Alahmadi,Adel Alkathiry,Amani Altassan,Alaa Basaffar,Widyan Bonnecaze,Alexis Shoaib,Hatoon Solé,Patrick |
author_sort |
Alahmadi,Adel |
title |
Type IV codes over a non-local non-unital ring |
title_short |
Type IV codes over a non-local non-unital ring |
title_full |
Type IV codes over a non-local non-unital ring |
title_fullStr |
Type IV codes over a non-local non-unital ring |
title_full_unstemmed |
Type IV codes over a non-local non-unital ring |
title_sort |
type iv codes over a non-local non-unital ring |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000400963 |
work_keys_str_mv |
AT alahmadiadel typeivcodesoveranonlocalnonunitalring AT alkathiryamani typeivcodesoveranonlocalnonunitalring AT altassanalaa typeivcodesoveranonlocalnonunitalring AT basaffarwidyan typeivcodesoveranonlocalnonunitalring AT bonnecazealexis typeivcodesoveranonlocalnonunitalring AT shoaibhatoon typeivcodesoveranonlocalnonunitalring AT solepatrick typeivcodesoveranonlocalnonunitalring |
_version_ |
1718439879071760384 |