Quasi self-dual codes over non-unital rings of order six

Abstract: There exist two semi-local rings of order 6 without identity for the multiplication. We classify up to coordinate permutation self-orthogonal codes of length n and size 6 n/2 over these rings (called here quasi self-dual codes or QSD) till the length n = 8. To any such code is attached ca...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alahmadi,Adel, Alkathiry,Amani, Altassan,Alaa, Basaffar,Widyan, Bonnecaze,Alexis, Shoaib,Hatoon, Solé,Patrick
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000401083
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract: There exist two semi-local rings of order 6 without identity for the multiplication. We classify up to coordinate permutation self-orthogonal codes of length n and size 6 n/2 over these rings (called here quasi self-dual codes or QSD) till the length n = 8. To any such code is attached canonically a ℤ 6 -code, which, when self-dual, produces an unimodular lattice by Construction A.