Quasi self-dual codes over non-unital rings of order six
Abstract: There exist two semi-local rings of order 6 without identity for the multiplication. We classify up to coordinate permutation self-orthogonal codes of length n and size 6 n/2 over these rings (called here quasi self-dual codes or QSD) till the length n = 8. To any such code is attached ca...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000401083 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000401083 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200004010832020-08-13Quasi self-dual codes over non-unital rings of order sixAlahmadi,AdelAlkathiry,AmaniAltassan,AlaaBasaffar,WidyanBonnecaze,AlexisShoaib,HatoonSolé,Patrick Non-unital rings Semi-local rings Self-orthogonal codes Unimodular lattices Abstract: There exist two semi-local rings of order 6 without identity for the multiplication. We classify up to coordinate permutation self-orthogonal codes of length n and size 6 n/2 over these rings (called here quasi self-dual codes or QSD) till the length n = 8. To any such code is attached canonically a ℤ 6 -code, which, when self-dual, produces an unimodular lattice by Construction A.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.4 20202020-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000401083en10.22199/issn.0717-6279-2020-04-0066 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Non-unital rings Semi-local rings Self-orthogonal codes Unimodular lattices |
spellingShingle |
Non-unital rings Semi-local rings Self-orthogonal codes Unimodular lattices Alahmadi,Adel Alkathiry,Amani Altassan,Alaa Basaffar,Widyan Bonnecaze,Alexis Shoaib,Hatoon Solé,Patrick Quasi self-dual codes over non-unital rings of order six |
description |
Abstract: There exist two semi-local rings of order 6 without identity for the multiplication. We classify up to coordinate permutation self-orthogonal codes of length n and size 6 n/2 over these rings (called here quasi self-dual codes or QSD) till the length n = 8. To any such code is attached canonically a ℤ 6 -code, which, when self-dual, produces an unimodular lattice by Construction A. |
author |
Alahmadi,Adel Alkathiry,Amani Altassan,Alaa Basaffar,Widyan Bonnecaze,Alexis Shoaib,Hatoon Solé,Patrick |
author_facet |
Alahmadi,Adel Alkathiry,Amani Altassan,Alaa Basaffar,Widyan Bonnecaze,Alexis Shoaib,Hatoon Solé,Patrick |
author_sort |
Alahmadi,Adel |
title |
Quasi self-dual codes over non-unital rings of order six |
title_short |
Quasi self-dual codes over non-unital rings of order six |
title_full |
Quasi self-dual codes over non-unital rings of order six |
title_fullStr |
Quasi self-dual codes over non-unital rings of order six |
title_full_unstemmed |
Quasi self-dual codes over non-unital rings of order six |
title_sort |
quasi self-dual codes over non-unital rings of order six |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000401083 |
work_keys_str_mv |
AT alahmadiadel quasiselfdualcodesovernonunitalringsofordersix AT alkathiryamani quasiselfdualcodesovernonunitalringsofordersix AT altassanalaa quasiselfdualcodesovernonunitalringsofordersix AT basaffarwidyan quasiselfdualcodesovernonunitalringsofordersix AT bonnecazealexis quasiselfdualcodesovernonunitalringsofordersix AT shoaibhatoon quasiselfdualcodesovernonunitalringsofordersix AT solepatrick quasiselfdualcodesovernonunitalringsofordersix |
_version_ |
1718439880689713152 |