Quasi self-dual codes over non-unital rings of order six

Abstract: There exist two semi-local rings of order 6 without identity for the multiplication. We classify up to coordinate permutation self-orthogonal codes of length n and size 6 n/2 over these rings (called here quasi self-dual codes or QSD) till the length n = 8. To any such code is attached ca...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alahmadi,Adel, Alkathiry,Amani, Altassan,Alaa, Basaffar,Widyan, Bonnecaze,Alexis, Shoaib,Hatoon, Solé,Patrick
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000401083
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000401083
record_format dspace
spelling oai:scielo:S0716-091720200004010832020-08-13Quasi self-dual codes over non-unital rings of order sixAlahmadi,AdelAlkathiry,AmaniAltassan,AlaaBasaffar,WidyanBonnecaze,AlexisShoaib,HatoonSolé,Patrick Non-unital rings Semi-local rings Self-orthogonal codes Unimodular lattices Abstract: There exist two semi-local rings of order 6 without identity for the multiplication. We classify up to coordinate permutation self-orthogonal codes of length n and size 6 n/2 over these rings (called here quasi self-dual codes or QSD) till the length n = 8. To any such code is attached canonically a ℤ 6 -code, which, when self-dual, produces an unimodular lattice by Construction A.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.4 20202020-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000401083en10.22199/issn.0717-6279-2020-04-0066
institution Scielo Chile
collection Scielo Chile
language English
topic Non-unital rings
Semi-local rings
Self-orthogonal codes
Unimodular lattices
spellingShingle Non-unital rings
Semi-local rings
Self-orthogonal codes
Unimodular lattices
Alahmadi,Adel
Alkathiry,Amani
Altassan,Alaa
Basaffar,Widyan
Bonnecaze,Alexis
Shoaib,Hatoon
Solé,Patrick
Quasi self-dual codes over non-unital rings of order six
description Abstract: There exist two semi-local rings of order 6 without identity for the multiplication. We classify up to coordinate permutation self-orthogonal codes of length n and size 6 n/2 over these rings (called here quasi self-dual codes or QSD) till the length n = 8. To any such code is attached canonically a ℤ 6 -code, which, when self-dual, produces an unimodular lattice by Construction A.
author Alahmadi,Adel
Alkathiry,Amani
Altassan,Alaa
Basaffar,Widyan
Bonnecaze,Alexis
Shoaib,Hatoon
Solé,Patrick
author_facet Alahmadi,Adel
Alkathiry,Amani
Altassan,Alaa
Basaffar,Widyan
Bonnecaze,Alexis
Shoaib,Hatoon
Solé,Patrick
author_sort Alahmadi,Adel
title Quasi self-dual codes over non-unital rings of order six
title_short Quasi self-dual codes over non-unital rings of order six
title_full Quasi self-dual codes over non-unital rings of order six
title_fullStr Quasi self-dual codes over non-unital rings of order six
title_full_unstemmed Quasi self-dual codes over non-unital rings of order six
title_sort quasi self-dual codes over non-unital rings of order six
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000401083
work_keys_str_mv AT alahmadiadel quasiselfdualcodesovernonunitalringsofordersix
AT alkathiryamani quasiselfdualcodesovernonunitalringsofordersix
AT altassanalaa quasiselfdualcodesovernonunitalringsofordersix
AT basaffarwidyan quasiselfdualcodesovernonunitalringsofordersix
AT bonnecazealexis quasiselfdualcodesovernonunitalringsofordersix
AT shoaibhatoon quasiselfdualcodesovernonunitalringsofordersix
AT solepatrick quasiselfdualcodesovernonunitalringsofordersix
_version_ 1718439880689713152