The nonsplit domination in subdivision graph

Abstract A dominating set D of a graph G = (V, E) is a nonsplit dominating set if the induced subgraph 〈V − D〉 is connected. The nonsplit domination number γ ns (G) of G is the minimum cardinality of a nonsplit dominating set. An edge e = uv of a graph G is sa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chrislight,R. Jemimal, Sunitha Mary,Y. Therese
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501113
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000501113
record_format dspace
spelling oai:scielo:S0716-091720200005011132020-11-16The nonsplit domination in subdivision graphChrislight,R. JemimalSunitha Mary,Y. Therese Domination number Nonsplit domination number Subdivision graph Nonsplit domination number of subdivision graph Abstract A dominating set D of a graph G = (V, E) is a nonsplit dominating set if the induced subgraph 〈V − D〉 is connected. The nonsplit domination number γ ns (G) of G is the minimum cardinality of a nonsplit dominating set. An edge e = uv of a graph G is said to be subdivided if e is replaced by the edges uw and vw for some vertex w not in V (G). The graph obtained from G by subdividing each edge of G exactly once is called the subdivision graph of G and is denoted by S(G). In this paper, we study the nonsplit domination number of subdivision graph. We determine exact values of the nonsplit domination number of subdivision graph for some standard graphs. We also obtain bounds and relationship with other graph theoretic parameters for the γ ns (S(G)).info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.5 20202020-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501113en10.22199/issn.0717-6279-2020-05-0068
institution Scielo Chile
collection Scielo Chile
language English
topic Domination number
Nonsplit domination number
Subdivision graph
Nonsplit domination number of subdivision graph
spellingShingle Domination number
Nonsplit domination number
Subdivision graph
Nonsplit domination number of subdivision graph
Chrislight,R. Jemimal
Sunitha Mary,Y. Therese
The nonsplit domination in subdivision graph
description Abstract A dominating set D of a graph G = (V, E) is a nonsplit dominating set if the induced subgraph 〈V − D〉 is connected. The nonsplit domination number γ ns (G) of G is the minimum cardinality of a nonsplit dominating set. An edge e = uv of a graph G is said to be subdivided if e is replaced by the edges uw and vw for some vertex w not in V (G). The graph obtained from G by subdividing each edge of G exactly once is called the subdivision graph of G and is denoted by S(G). In this paper, we study the nonsplit domination number of subdivision graph. We determine exact values of the nonsplit domination number of subdivision graph for some standard graphs. We also obtain bounds and relationship with other graph theoretic parameters for the γ ns (S(G)).
author Chrislight,R. Jemimal
Sunitha Mary,Y. Therese
author_facet Chrislight,R. Jemimal
Sunitha Mary,Y. Therese
author_sort Chrislight,R. Jemimal
title The nonsplit domination in subdivision graph
title_short The nonsplit domination in subdivision graph
title_full The nonsplit domination in subdivision graph
title_fullStr The nonsplit domination in subdivision graph
title_full_unstemmed The nonsplit domination in subdivision graph
title_sort nonsplit domination in subdivision graph
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501113
work_keys_str_mv AT chrislightrjemimal thenonsplitdominationinsubdivisiongraph
AT sunithamaryytherese thenonsplitdominationinsubdivisiongraph
AT chrislightrjemimal nonsplitdominationinsubdivisiongraph
AT sunithamaryytherese nonsplitdominationinsubdivisiongraph
_version_ 1718439881312567296