Creating a new two-step recursive memory method with eight-order based on Kung and Traub’s method

Abstract We are devoted to the study of an iterative recursive Traub-Steffensen like method for approximating the simple roots of a nonlinear equation. Using the recursive technique, the R-order of convergence is increased from 4 to 8 without any new function evaluations, which means 100% improvemen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Torkashvand,Vali, Momenzadeh,Mohammad, Lotf,Taher
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501167
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000501167
record_format dspace
spelling oai:scielo:S0716-091720200005011672020-11-16Creating a new two-step recursive memory method with eight-order based on Kung and Traub’s methodTorkashvand,ValiMomenzadeh,MohammadLotf,Taher Nonlinear equations Simple roots Computational order of convergence Weight function Recursive method with memory Abstract We are devoted to the study of an iterative recursive Traub-Steffensen like method for approximating the simple roots of a nonlinear equation. Using the recursive technique, the R-order of convergence is increased from 4 to 8 without any new function evaluations, which means 100% improvement of the order of the convergence. The theoretical study of the convergence rate is investigated and demonstrated. A few nonlinear problems are presented to justify the theoretical study.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.5 20202020-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501167en10.22199/issn.0717-6279-2020-05-0072
institution Scielo Chile
collection Scielo Chile
language English
topic Nonlinear equations
Simple roots
Computational order of convergence
Weight function
Recursive method with memory
spellingShingle Nonlinear equations
Simple roots
Computational order of convergence
Weight function
Recursive method with memory
Torkashvand,Vali
Momenzadeh,Mohammad
Lotf,Taher
Creating a new two-step recursive memory method with eight-order based on Kung and Traub’s method
description Abstract We are devoted to the study of an iterative recursive Traub-Steffensen like method for approximating the simple roots of a nonlinear equation. Using the recursive technique, the R-order of convergence is increased from 4 to 8 without any new function evaluations, which means 100% improvement of the order of the convergence. The theoretical study of the convergence rate is investigated and demonstrated. A few nonlinear problems are presented to justify the theoretical study.
author Torkashvand,Vali
Momenzadeh,Mohammad
Lotf,Taher
author_facet Torkashvand,Vali
Momenzadeh,Mohammad
Lotf,Taher
author_sort Torkashvand,Vali
title Creating a new two-step recursive memory method with eight-order based on Kung and Traub’s method
title_short Creating a new two-step recursive memory method with eight-order based on Kung and Traub’s method
title_full Creating a new two-step recursive memory method with eight-order based on Kung and Traub’s method
title_fullStr Creating a new two-step recursive memory method with eight-order based on Kung and Traub’s method
title_full_unstemmed Creating a new two-step recursive memory method with eight-order based on Kung and Traub’s method
title_sort creating a new two-step recursive memory method with eight-order based on kung and traub’s method
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501167
work_keys_str_mv AT torkashvandvali creatinganewtwosteprecursivememorymethodwitheightorderbasedonkungandtraub8217smethod
AT momenzadehmohammad creatinganewtwosteprecursivememorymethodwitheightorderbasedonkungandtraub8217smethod
AT lotftaher creatinganewtwosteprecursivememorymethodwitheightorderbasedonkungandtraub8217smethod
_version_ 1718439882564567040