Solution of integral equations via new Z-contraction mapping in Gb-metric spaces
Abstract We introduce a new type of (α, β)-admissibility and (α, β)-Z-contraction mappings in the frame work of G b -metric spaces. Using these concepts, fixed point results for (α, β)-Z-contraction mappings in the frame work of complete G b -m...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501273 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract We introduce a new type of (α, β)-admissibility and (α, β)-Z-contraction mappings in the frame work of G b -metric spaces. Using these concepts, fixed point results for (α, β)-Z-contraction mappings in the frame work of complete G b -metric spaces are established. As an application, we discuss the existence of solution for integral equation of the form: x(t) = g(t) + ∫ 1 0 K(t, s, u(s))ds, t ∈ [0, 1], O. T. Mewomowhere K : [0, 1]×[0, 1] ×R → R and g : [0, 1] → R are continuous functions. The results obtained in this paper generalize, unify and improve the results of Liu et al., [17], Antonio-Francisco et al. [23], Khojasteh et al. [15], Kumar et al. [16] and others in this direction. |
---|