Solution of integral equations via new Z-contraction mapping in Gb-metric spaces
Abstract We introduce a new type of (α, β)-admissibility and (α, β)-Z-contraction mappings in the frame work of G b -metric spaces. Using these concepts, fixed point results for (α, β)-Z-contraction mappings in the frame work of complete G b -m...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501273 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000501273 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200005012732020-11-16Solution of integral equations via new Z-contraction mapping in Gb-metric spacesMebawondu,A. A.Izuchukwu,C.Oyewole,K. O.Mewomo,O. T. (α, β)-ZF -contraction (α, β)-admissible type B mapping Fixed point Gb-metric space Abstract We introduce a new type of (α, β)-admissibility and (α, β)-Z-contraction mappings in the frame work of G b -metric spaces. Using these concepts, fixed point results for (α, β)-Z-contraction mappings in the frame work of complete G b -metric spaces are established. As an application, we discuss the existence of solution for integral equation of the form: x(t) = g(t) + ∫ 1 0 K(t, s, u(s))ds, t ∈ [0, 1], O. T. Mewomowhere K : [0, 1]×[0, 1] ×R → R and g : [0, 1] → R are continuous functions. The results obtained in this paper generalize, unify and improve the results of Liu et al., [17], Antonio-Francisco et al. [23], Khojasteh et al. [15], Kumar et al. [16] and others in this direction.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.5 20202020-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501273en10.22199/issn.0717-6279-2020-05-0078 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
(α, β)-ZF -contraction (α, β)-admissible type B mapping Fixed point Gb-metric space |
spellingShingle |
(α, β)-ZF -contraction (α, β)-admissible type B mapping Fixed point Gb-metric space Mebawondu,A. A. Izuchukwu,C. Oyewole,K. O. Mewomo,O. T. Solution of integral equations via new Z-contraction mapping in Gb-metric spaces |
description |
Abstract We introduce a new type of (α, β)-admissibility and (α, β)-Z-contraction mappings in the frame work of G b -metric spaces. Using these concepts, fixed point results for (α, β)-Z-contraction mappings in the frame work of complete G b -metric spaces are established. As an application, we discuss the existence of solution for integral equation of the form: x(t) = g(t) + ∫ 1 0 K(t, s, u(s))ds, t ∈ [0, 1], O. T. Mewomowhere K : [0, 1]×[0, 1] ×R → R and g : [0, 1] → R are continuous functions. The results obtained in this paper generalize, unify and improve the results of Liu et al., [17], Antonio-Francisco et al. [23], Khojasteh et al. [15], Kumar et al. [16] and others in this direction. |
author |
Mebawondu,A. A. Izuchukwu,C. Oyewole,K. O. Mewomo,O. T. |
author_facet |
Mebawondu,A. A. Izuchukwu,C. Oyewole,K. O. Mewomo,O. T. |
author_sort |
Mebawondu,A. A. |
title |
Solution of integral equations via new Z-contraction mapping in Gb-metric spaces |
title_short |
Solution of integral equations via new Z-contraction mapping in Gb-metric spaces |
title_full |
Solution of integral equations via new Z-contraction mapping in Gb-metric spaces |
title_fullStr |
Solution of integral equations via new Z-contraction mapping in Gb-metric spaces |
title_full_unstemmed |
Solution of integral equations via new Z-contraction mapping in Gb-metric spaces |
title_sort |
solution of integral equations via new z-contraction mapping in gb-metric spaces |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501273 |
work_keys_str_mv |
AT mebawonduaa solutionofintegralequationsvianewzcontractionmappingingbmetricspaces AT izuchukwuc solutionofintegralequationsvianewzcontractionmappingingbmetricspaces AT oyewoleko solutionofintegralequationsvianewzcontractionmappingingbmetricspaces AT mewomoot solutionofintegralequationsvianewzcontractionmappingingbmetricspaces |
_version_ |
1718439884330369024 |