Solution of integral equations via new Z-contraction mapping in Gb-metric spaces

Abstract We introduce a new type of (α, β)-admissibility and (α, β)-Z-contraction mappings in the frame work of G b -metric spaces. Using these concepts, fixed point results for (α, β)-Z-contraction mappings in the frame work of complete G b -m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mebawondu,A. A., Izuchukwu,C., Oyewole,K. O., Mewomo,O. T.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501273
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000501273
record_format dspace
spelling oai:scielo:S0716-091720200005012732020-11-16Solution of integral equations via new Z-contraction mapping in Gb-metric spacesMebawondu,A. A.Izuchukwu,C.Oyewole,K. O.Mewomo,O. T. (α, β)-ZF -contraction (α, β)-admissible type B mapping Fixed point Gb-metric space Abstract We introduce a new type of (α, β)-admissibility and (α, β)-Z-contraction mappings in the frame work of G b -metric spaces. Using these concepts, fixed point results for (α, β)-Z-contraction mappings in the frame work of complete G b -metric spaces are established. As an application, we discuss the existence of solution for integral equation of the form: x(t) = g(t) + ∫ 1 0 K(t, s, u(s))ds, t ∈ [0, 1], O. T. Mewomowhere K : [0, 1]×[0, 1] ×R → R and g : [0, 1] → R are continuous functions. The results obtained in this paper generalize, unify and improve the results of Liu et al., [17], Antonio-Francisco et al. [23], Khojasteh et al. [15], Kumar et al. [16] and others in this direction.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.5 20202020-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501273en10.22199/issn.0717-6279-2020-05-0078
institution Scielo Chile
collection Scielo Chile
language English
topic (α, β)-ZF -contraction
(α, β)-admissible type B mapping
Fixed point
Gb-metric space
spellingShingle (α, β)-ZF -contraction
(α, β)-admissible type B mapping
Fixed point
Gb-metric space
Mebawondu,A. A.
Izuchukwu,C.
Oyewole,K. O.
Mewomo,O. T.
Solution of integral equations via new Z-contraction mapping in Gb-metric spaces
description Abstract We introduce a new type of (α, β)-admissibility and (α, β)-Z-contraction mappings in the frame work of G b -metric spaces. Using these concepts, fixed point results for (α, β)-Z-contraction mappings in the frame work of complete G b -metric spaces are established. As an application, we discuss the existence of solution for integral equation of the form: x(t) = g(t) + ∫ 1 0 K(t, s, u(s))ds, t ∈ [0, 1], O. T. Mewomowhere K : [0, 1]×[0, 1] ×R → R and g : [0, 1] → R are continuous functions. The results obtained in this paper generalize, unify and improve the results of Liu et al., [17], Antonio-Francisco et al. [23], Khojasteh et al. [15], Kumar et al. [16] and others in this direction.
author Mebawondu,A. A.
Izuchukwu,C.
Oyewole,K. O.
Mewomo,O. T.
author_facet Mebawondu,A. A.
Izuchukwu,C.
Oyewole,K. O.
Mewomo,O. T.
author_sort Mebawondu,A. A.
title Solution of integral equations via new Z-contraction mapping in Gb-metric spaces
title_short Solution of integral equations via new Z-contraction mapping in Gb-metric spaces
title_full Solution of integral equations via new Z-contraction mapping in Gb-metric spaces
title_fullStr Solution of integral equations via new Z-contraction mapping in Gb-metric spaces
title_full_unstemmed Solution of integral equations via new Z-contraction mapping in Gb-metric spaces
title_sort solution of integral equations via new z-contraction mapping in gb-metric spaces
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501273
work_keys_str_mv AT mebawonduaa solutionofintegralequationsvianewzcontractionmappingingbmetricspaces
AT izuchukwuc solutionofintegralequationsvianewzcontractionmappingingbmetricspaces
AT oyewoleko solutionofintegralequationsvianewzcontractionmappingingbmetricspaces
AT mewomoot solutionofintegralequationsvianewzcontractionmappingingbmetricspaces
_version_ 1718439884330369024