Sequences of numbers via permutation polynomials over some finite rings

Abstract A polynomial can represent every function from a finite field to itself. The functions which are also permutations of the field give rise to permutation polynomials, which have potential applications in cryptology and coding theory. Permutation polynomials over finite rings are studied with...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vadiraja Bhatta,G. R., Shankar,B. R., Mishra,Vishnu Narayan, Poojary,Prasanna
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501295
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A polynomial can represent every function from a finite field to itself. The functions which are also permutations of the field give rise to permutation polynomials, which have potential applications in cryptology and coding theory. Permutation polynomials over finite rings are studied with respect to the sequences they generate. The sequences obtained through some permutation polynomials are tested for randomness by carrying out known statistical tests. Random number generation plays a major role in cryptography and hence permutation polynomials may be used as random number generators.