On reformulated Narumi-Katayama index

Abstract A graph is a mathematical model form by set of dots for vertices some of which are connected by lines named as edges. A topological index is a numeric value obtained from a graph mathematically which characterize its topology. The reformulated Narumi-Katayama index of a graph G is defined a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cancan,Murat, De,Nilanjan, Alaeiyan,Mehdi, Reza Farahani,Mohammad
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501333
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000501333
record_format dspace
spelling oai:scielo:S0716-091720200005013332020-11-16On reformulated Narumi-Katayama indexCancan,MuratDe,NilanjanAlaeiyan,MehdiReza Farahani,Mohammad Degree Graph Graph operations Reformulated NK-index Topological indices Abstract A graph is a mathematical model form by set of dots for vertices some of which are connected by lines named as edges. A topological index is a numeric value obtained from a graph mathematically which characterize its topology. The reformulated Narumi-Katayama index of a graph G is defined as the product of edge degrees of all the vertices of G which is introduced in 1984, to used the carbon skeleton of a saturated hydrocarbons. The degree of an edge is given by the sum of degrees of the end vertices of the edge minus 2. In this paper, we compute the reformulated Narumi-Katayama index for different graph operations.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.5 20202020-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501333en10.22199/issn.0717-6279-2020-05-0081
institution Scielo Chile
collection Scielo Chile
language English
topic Degree
Graph
Graph operations
Reformulated NK-index
Topological indices
spellingShingle Degree
Graph
Graph operations
Reformulated NK-index
Topological indices
Cancan,Murat
De,Nilanjan
Alaeiyan,Mehdi
Reza Farahani,Mohammad
On reformulated Narumi-Katayama index
description Abstract A graph is a mathematical model form by set of dots for vertices some of which are connected by lines named as edges. A topological index is a numeric value obtained from a graph mathematically which characterize its topology. The reformulated Narumi-Katayama index of a graph G is defined as the product of edge degrees of all the vertices of G which is introduced in 1984, to used the carbon skeleton of a saturated hydrocarbons. The degree of an edge is given by the sum of degrees of the end vertices of the edge minus 2. In this paper, we compute the reformulated Narumi-Katayama index for different graph operations.
author Cancan,Murat
De,Nilanjan
Alaeiyan,Mehdi
Reza Farahani,Mohammad
author_facet Cancan,Murat
De,Nilanjan
Alaeiyan,Mehdi
Reza Farahani,Mohammad
author_sort Cancan,Murat
title On reformulated Narumi-Katayama index
title_short On reformulated Narumi-Katayama index
title_full On reformulated Narumi-Katayama index
title_fullStr On reformulated Narumi-Katayama index
title_full_unstemmed On reformulated Narumi-Katayama index
title_sort on reformulated narumi-katayama index
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501333
work_keys_str_mv AT cancanmurat onreformulatednarumikatayamaindex
AT denilanjan onreformulatednarumikatayamaindex
AT alaeiyanmehdi onreformulatednarumikatayamaindex
AT rezafarahanimohammad onreformulatednarumikatayamaindex
_version_ 1718439884978388992