Bivariate hierarchical model for the Meta-analysis of diagnostic tests in studies with binary responses: its application from SAS and R

Abstract Studies on the precision of diagnostic tests usually report the number of true positives, false positives, true negatives, and false negatives. There is generally a negative association between the number of true positives and true negatives, as studies that adopt less strict criteria to de...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bauz-Olvera,Sergio A., Pambabay-Calero,Johny J., Nieto-Librero,Ana B., Galindo-Villardón,Ma. Purificación
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501365
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000501365
record_format dspace
spelling oai:scielo:S0716-091720200005013652020-11-16Bivariate hierarchical model for the Meta-analysis of diagnostic tests in studies with binary responses: its application from SAS and RBauz-Olvera,Sergio A.Pambabay-Calero,Johny J.Nieto-Librero,Ana B.Galindo-Villardón,Ma. Purificación Sensitivity Specificity Diagnostic accuracy Random effects Bivariate approach Abstract Studies on the precision of diagnostic tests usually report the number of true positives, false positives, true negatives, and false negatives. There is generally a negative association between the number of true positives and true negatives, as studies that adopt less strict criteria to declare a test as positive need higher sensitivities and lower specificities. Given this particularity, the bivariate nature of the data must be preserved, by modeling sensitivity and specificity together. In this paper, we will use the bivariate hierarchical model applied to a meta-analysis data set which was an update to a previous systematic review of diagnostic tests for chronic Chagas disease. Our modeling framework was implemented with SAS NLMIXED procedure, making it possible to obtain summary measures for sensitivity and specificity, with values of 0.725 and 0.995, respectively, out of a total of 35 studies with 6057 patients.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.5 20202020-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501365en10.22199/issn.0717-6279-2020-05-0083
institution Scielo Chile
collection Scielo Chile
language English
topic Sensitivity
Specificity
Diagnostic accuracy
Random effects
Bivariate approach
spellingShingle Sensitivity
Specificity
Diagnostic accuracy
Random effects
Bivariate approach
Bauz-Olvera,Sergio A.
Pambabay-Calero,Johny J.
Nieto-Librero,Ana B.
Galindo-Villardón,Ma. Purificación
Bivariate hierarchical model for the Meta-analysis of diagnostic tests in studies with binary responses: its application from SAS and R
description Abstract Studies on the precision of diagnostic tests usually report the number of true positives, false positives, true negatives, and false negatives. There is generally a negative association between the number of true positives and true negatives, as studies that adopt less strict criteria to declare a test as positive need higher sensitivities and lower specificities. Given this particularity, the bivariate nature of the data must be preserved, by modeling sensitivity and specificity together. In this paper, we will use the bivariate hierarchical model applied to a meta-analysis data set which was an update to a previous systematic review of diagnostic tests for chronic Chagas disease. Our modeling framework was implemented with SAS NLMIXED procedure, making it possible to obtain summary measures for sensitivity and specificity, with values of 0.725 and 0.995, respectively, out of a total of 35 studies with 6057 patients.
author Bauz-Olvera,Sergio A.
Pambabay-Calero,Johny J.
Nieto-Librero,Ana B.
Galindo-Villardón,Ma. Purificación
author_facet Bauz-Olvera,Sergio A.
Pambabay-Calero,Johny J.
Nieto-Librero,Ana B.
Galindo-Villardón,Ma. Purificación
author_sort Bauz-Olvera,Sergio A.
title Bivariate hierarchical model for the Meta-analysis of diagnostic tests in studies with binary responses: its application from SAS and R
title_short Bivariate hierarchical model for the Meta-analysis of diagnostic tests in studies with binary responses: its application from SAS and R
title_full Bivariate hierarchical model for the Meta-analysis of diagnostic tests in studies with binary responses: its application from SAS and R
title_fullStr Bivariate hierarchical model for the Meta-analysis of diagnostic tests in studies with binary responses: its application from SAS and R
title_full_unstemmed Bivariate hierarchical model for the Meta-analysis of diagnostic tests in studies with binary responses: its application from SAS and R
title_sort bivariate hierarchical model for the meta-analysis of diagnostic tests in studies with binary responses: its application from sas and r
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000501365
work_keys_str_mv AT bauzolverasergioa bivariatehierarchicalmodelforthemetaanalysisofdiagnostictestsinstudieswithbinaryresponsesitsapplicationfromsasandr
AT pambabaycalerojohnyj bivariatehierarchicalmodelforthemetaanalysisofdiagnostictestsinstudieswithbinaryresponsesitsapplicationfromsasandr
AT nietolibreroanab bivariatehierarchicalmodelforthemetaanalysisofdiagnostictestsinstudieswithbinaryresponsesitsapplicationfromsasandr
AT galindovillardonmapurificacion bivariatehierarchicalmodelforthemetaanalysisofdiagnostictestsinstudieswithbinaryresponsesitsapplicationfromsasandr
_version_ 1718439885454442496