Trees with vertex-edge roman domination number twice the domination number minus one

Abstract A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V, E) is a function f : V (G) → {0, 1, 2} such that for each edge e = uv either max{f (u), f (v)} ≠ 0 or there exists a vertex w such that either wu ∈ E or wv ∈ E and f (w) = 2....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Naresh Kumar,H., Venkatakrishnan,Y. B.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601381
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V, E) is a function f : V (G) → {0, 1, 2} such that for each edge e = uv either max{f (u), f (v)} ≠ 0 or there exists a vertex w such that either wu ∈ E or wv ∈ E and f (w) = 2. The weight of a ve-RDF is the sum of its function values over all vertices. The vertex-edge Roman domination number of a graph G, denoted by γ veR (G), is the minimum weight of a ve-RDF G. We characterize trees with vertexedge roman domination number equal to twice domination number minus one.