Trees with vertex-edge roman domination number twice the domination number minus one
Abstract A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V, E) is a function f : V (G) → {0, 1, 2} such that for each edge e = uv either max{f (u), f (v)} ≠ 0 or there exists a vertex w such that either wu ∈ E or wv ∈ E and f (w) = 2....
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601381 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V, E) is a function f : V (G) → {0, 1, 2} such that for each edge e = uv either max{f (u), f (v)} ≠ 0 or there exists a vertex w such that either wu ∈ E or wv ∈ E and f (w) = 2. The weight of a ve-RDF is the sum of its function values over all vertices. The vertex-edge Roman domination number of a graph G, denoted by γ veR (G), is the minimum weight of a ve-RDF G. We characterize trees with vertexedge roman domination number equal to twice domination number minus one. |
---|