Trees with vertex-edge roman domination number twice the domination number minus one

Abstract A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V, E) is a function f : V (G) → {0, 1, 2} such that for each edge e = uv either max{f (u), f (v)} ≠ 0 or there exists a vertex w such that either wu ∈ E or wv ∈ E and f (w) = 2....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Naresh Kumar,H., Venkatakrishnan,Y. B.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601381
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000601381
record_format dspace
spelling oai:scielo:S0716-091720200006013812020-12-02Trees with vertex-edge roman domination number twice the domination number minus oneNaresh Kumar,H.Venkatakrishnan,Y. B. Vertex-edge roman dominating set Dominating set Trees Abstract A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V, E) is a function f : V (G) → {0, 1, 2} such that for each edge e = uv either max{f (u), f (v)} ≠ 0 or there exists a vertex w such that either wu ∈ E or wv ∈ E and f (w) = 2. The weight of a ve-RDF is the sum of its function values over all vertices. The vertex-edge Roman domination number of a graph G, denoted by γ veR (G), is the minimum weight of a ve-RDF G. We characterize trees with vertexedge roman domination number equal to twice domination number minus one.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.6 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601381en10.22199/issn.0717-6279-2020-06-0084
institution Scielo Chile
collection Scielo Chile
language English
topic Vertex-edge roman dominating set
Dominating set
Trees
spellingShingle Vertex-edge roman dominating set
Dominating set
Trees
Naresh Kumar,H.
Venkatakrishnan,Y. B.
Trees with vertex-edge roman domination number twice the domination number minus one
description Abstract A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V, E) is a function f : V (G) → {0, 1, 2} such that for each edge e = uv either max{f (u), f (v)} ≠ 0 or there exists a vertex w such that either wu ∈ E or wv ∈ E and f (w) = 2. The weight of a ve-RDF is the sum of its function values over all vertices. The vertex-edge Roman domination number of a graph G, denoted by γ veR (G), is the minimum weight of a ve-RDF G. We characterize trees with vertexedge roman domination number equal to twice domination number minus one.
author Naresh Kumar,H.
Venkatakrishnan,Y. B.
author_facet Naresh Kumar,H.
Venkatakrishnan,Y. B.
author_sort Naresh Kumar,H.
title Trees with vertex-edge roman domination number twice the domination number minus one
title_short Trees with vertex-edge roman domination number twice the domination number minus one
title_full Trees with vertex-edge roman domination number twice the domination number minus one
title_fullStr Trees with vertex-edge roman domination number twice the domination number minus one
title_full_unstemmed Trees with vertex-edge roman domination number twice the domination number minus one
title_sort trees with vertex-edge roman domination number twice the domination number minus one
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601381
work_keys_str_mv AT nareshkumarh treeswithvertexedgeromandominationnumbertwicethedominationnumberminusone
AT venkatakrishnanyb treeswithvertexedgeromandominationnumbertwicethedominationnumberminusone
_version_ 1718439885732315136