On the pseudospectrum preservers

Abstract Let X and Y be two complex Banach spaces, and let B(X) denotes the algebra of all bounded linear operators on X. We characterize additive maps from B(X) onto B(Y ) compressing the pseudospectrum subsets Δ ϵ (.), where Δ ϵ (.) stands for any one of the...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Kettani,Mustapha Ech-Chérif El, Lahssaini,Aziz
Langue:English
Publié: Universidad Católica del Norte, Departamento de Matemáticas 2020
Sujets:
Accès en ligne:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601457
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract Let X and Y be two complex Banach spaces, and let B(X) denotes the algebra of all bounded linear operators on X. We characterize additive maps from B(X) onto B(Y ) compressing the pseudospectrum subsets Δ ϵ (.), where Δ ϵ (.) stands for any one of the spectral functions σ ϵ (.), σ l ϵ (.) and σ r ϵ (.) for some ϵ > 0. We also characterize the additive (resp. non-linear) maps from B(X) onto B(Y) preserving the pseudospectrum σ ϵ (.) of generalized products of operators for some ϵ > 0 (resp. for every ϵ > 0).