On the pseudospectrum preservers

Abstract Let X and Y be two complex Banach spaces, and let B(X) denotes the algebra of all bounded linear operators on X. We characterize additive maps from B(X) onto B(Y ) compressing the pseudospectrum subsets Δ ϵ (.), where Δ ϵ (.) stands for any one of the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kettani,Mustapha Ech-Chérif El, Lahssaini,Aziz
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601457
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172020000601457
record_format dspace
spelling oai:scielo:S0716-091720200006014572020-12-02On the pseudospectrum preserversKettani,Mustapha Ech-Chérif ElLahssaini,Aziz Additive maps Pseudospectrum preservers Generalized products Abstract Let X and Y be two complex Banach spaces, and let B(X) denotes the algebra of all bounded linear operators on X. We characterize additive maps from B(X) onto B(Y ) compressing the pseudospectrum subsets Δ ϵ (.), where Δ ϵ (.) stands for any one of the spectral functions σ ϵ (.), σ l ϵ (.) and σ r ϵ (.) for some ϵ > 0. We also characterize the additive (resp. non-linear) maps from B(X) onto B(Y) preserving the pseudospectrum σ ϵ (.) of generalized products of operators for some ϵ > 0 (resp. for every ϵ > 0).info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.6 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601457en10.22199/issn.0717-6279-2020-06-0089
institution Scielo Chile
collection Scielo Chile
language English
topic Additive maps
Pseudospectrum preservers
Generalized products
spellingShingle Additive maps
Pseudospectrum preservers
Generalized products
Kettani,Mustapha Ech-Chérif El
Lahssaini,Aziz
On the pseudospectrum preservers
description Abstract Let X and Y be two complex Banach spaces, and let B(X) denotes the algebra of all bounded linear operators on X. We characterize additive maps from B(X) onto B(Y ) compressing the pseudospectrum subsets Δ ϵ (.), where Δ ϵ (.) stands for any one of the spectral functions σ ϵ (.), σ l ϵ (.) and σ r ϵ (.) for some ϵ > 0. We also characterize the additive (resp. non-linear) maps from B(X) onto B(Y) preserving the pseudospectrum σ ϵ (.) of generalized products of operators for some ϵ > 0 (resp. for every ϵ > 0).
author Kettani,Mustapha Ech-Chérif El
Lahssaini,Aziz
author_facet Kettani,Mustapha Ech-Chérif El
Lahssaini,Aziz
author_sort Kettani,Mustapha Ech-Chérif El
title On the pseudospectrum preservers
title_short On the pseudospectrum preservers
title_full On the pseudospectrum preservers
title_fullStr On the pseudospectrum preservers
title_full_unstemmed On the pseudospectrum preservers
title_sort on the pseudospectrum preservers
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601457
work_keys_str_mv AT kettanimustaphaechcherifel onthepseudospectrumpreservers
AT lahssainiaziz onthepseudospectrumpreservers
_version_ 1718439887114338304