On the pseudospectrum preservers
Abstract Let X and Y be two complex Banach spaces, and let B(X) denotes the algebra of all bounded linear operators on X. We characterize additive maps from B(X) onto B(Y ) compressing the pseudospectrum subsets Δ ϵ (.), where Δ ϵ (.) stands for any one of the...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601457 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172020000601457 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720200006014572020-12-02On the pseudospectrum preserversKettani,Mustapha Ech-Chérif ElLahssaini,Aziz Additive maps Pseudospectrum preservers Generalized products Abstract Let X and Y be two complex Banach spaces, and let B(X) denotes the algebra of all bounded linear operators on X. We characterize additive maps from B(X) onto B(Y ) compressing the pseudospectrum subsets Δ ϵ (.), where Δ ϵ (.) stands for any one of the spectral functions σ ϵ (.), σ l ϵ (.) and σ r ϵ (.) for some ϵ > 0. We also characterize the additive (resp. non-linear) maps from B(X) onto B(Y) preserving the pseudospectrum σ ϵ (.) of generalized products of operators for some ϵ > 0 (resp. for every ϵ > 0).info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.39 n.6 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601457en10.22199/issn.0717-6279-2020-06-0089 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Additive maps Pseudospectrum preservers Generalized products |
spellingShingle |
Additive maps Pseudospectrum preservers Generalized products Kettani,Mustapha Ech-Chérif El Lahssaini,Aziz On the pseudospectrum preservers |
description |
Abstract Let X and Y be two complex Banach spaces, and let B(X) denotes the algebra of all bounded linear operators on X. We characterize additive maps from B(X) onto B(Y ) compressing the pseudospectrum subsets Δ ϵ (.), where Δ ϵ (.) stands for any one of the spectral functions σ ϵ (.), σ l ϵ (.) and σ r ϵ (.) for some ϵ > 0. We also characterize the additive (resp. non-linear) maps from B(X) onto B(Y) preserving the pseudospectrum σ ϵ (.) of generalized products of operators for some ϵ > 0 (resp. for every ϵ > 0). |
author |
Kettani,Mustapha Ech-Chérif El Lahssaini,Aziz |
author_facet |
Kettani,Mustapha Ech-Chérif El Lahssaini,Aziz |
author_sort |
Kettani,Mustapha Ech-Chérif El |
title |
On the pseudospectrum preservers |
title_short |
On the pseudospectrum preservers |
title_full |
On the pseudospectrum preservers |
title_fullStr |
On the pseudospectrum preservers |
title_full_unstemmed |
On the pseudospectrum preservers |
title_sort |
on the pseudospectrum preservers |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601457 |
work_keys_str_mv |
AT kettanimustaphaechcherifel onthepseudospectrumpreservers AT lahssainiaziz onthepseudospectrumpreservers |
_version_ |
1718439887114338304 |