On even vertex odd mean labeling of the calendula graphs
Abstract A graph G with |E(G)| = q, an injective function f : V (G) → {0, 2, 4, ..., 2q} is an even vertex odd mean labeling of G that induces the values f(u)+f(v) 2 for the q pairs of adjacent vertices u, v are distinct. In this paper, we investigate an even vertex labeling for the calend...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601515 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract A graph G with |E(G)| = q, an injective function f : V (G) → {0, 2, 4, ..., 2q} is an even vertex odd mean labeling of G that induces the values f(u)+f(v) 2 for the q pairs of adjacent vertices u, v are distinct. In this paper, we investigate an even vertex labeling for the calendula graphs. Moreover we introduce the definition of arbitrary calendula graph and prove that the arbitrary calendula graphs are also even vertex odd mean graphs. |
---|