On even vertex odd mean labeling of the calendula graphs

Abstract A graph G with |E(G)| = q, an injective function f : V (G) → {0, 2, 4, ..., 2q} is an even vertex odd mean labeling of G that induces the values f(u)+f(v) 2 for the q pairs of adjacent vertices u, v are distinct. In this paper, we investigate an even vertex labeling for the calend...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Basher,M.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172020000601515
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A graph G with |E(G)| = q, an injective function f : V (G) → {0, 2, 4, ..., 2q} is an even vertex odd mean labeling of G that induces the values f(u)+f(v) 2 for the q pairs of adjacent vertices u, v are distinct. In this paper, we investigate an even vertex labeling for the calendula graphs. Moreover we introduce the definition of arbitrary calendula graph and prove that the arbitrary calendula graphs are also even vertex odd mean graphs.