New algebraic properties of middle Bol loops II
Abstract A loop (Q, ·, \, /) is called a middle Bol loop (MBL) if it obeys the identity x(yz\x)=(x/z)(y\x). To every MBL corresponds a right Bol loop (RBL) and a left Bol loop (LBL). In this paper, some new algebraic properties of a middle Bol loop are established in a different style. Some new meth...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000100085 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172021000100085 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720210001000852021-01-26New algebraic properties of middle Bol loops IIJaiyéolá,T. G.David,S. P.Oyebola,O. O. Bol loops Middle Bol loops Moufang loops Abstract A loop (Q, ·, \, /) is called a middle Bol loop (MBL) if it obeys the identity x(yz\x)=(x/z)(y\x). To every MBL corresponds a right Bol loop (RBL) and a left Bol loop (LBL). In this paper, some new algebraic properties of a middle Bol loop are established in a different style. Some new methods of constructing a MBL by using a non-abelian group, the holomorph of a right Bol loop and a ring are described. Some equivalent necessary and sufficient conditions for a right (left) Bol loop to be a middle Bol loop are established. A RBL (MBL, LBL, MBL) is shown to be a MBL (RBL, MBL, LBL) if and only if it is a Moufang loop.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.1 20212021-02-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000100085en10.22199/issn.0717-6279-2021-01-0006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Bol loops Middle Bol loops Moufang loops |
spellingShingle |
Bol loops Middle Bol loops Moufang loops Jaiyéolá,T. G. David,S. P. Oyebola,O. O. New algebraic properties of middle Bol loops II |
description |
Abstract A loop (Q, ·, \, /) is called a middle Bol loop (MBL) if it obeys the identity x(yz\x)=(x/z)(y\x). To every MBL corresponds a right Bol loop (RBL) and a left Bol loop (LBL). In this paper, some new algebraic properties of a middle Bol loop are established in a different style. Some new methods of constructing a MBL by using a non-abelian group, the holomorph of a right Bol loop and a ring are described. Some equivalent necessary and sufficient conditions for a right (left) Bol loop to be a middle Bol loop are established. A RBL (MBL, LBL, MBL) is shown to be a MBL (RBL, MBL, LBL) if and only if it is a Moufang loop. |
author |
Jaiyéolá,T. G. David,S. P. Oyebola,O. O. |
author_facet |
Jaiyéolá,T. G. David,S. P. Oyebola,O. O. |
author_sort |
Jaiyéolá,T. G. |
title |
New algebraic properties of middle Bol loops II |
title_short |
New algebraic properties of middle Bol loops II |
title_full |
New algebraic properties of middle Bol loops II |
title_fullStr |
New algebraic properties of middle Bol loops II |
title_full_unstemmed |
New algebraic properties of middle Bol loops II |
title_sort |
new algebraic properties of middle bol loops ii |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2021 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000100085 |
work_keys_str_mv |
AT jaiyeolatg newalgebraicpropertiesofmiddlebolloopsii AT davidsp newalgebraicpropertiesofmiddlebolloopsii AT oyebolaoo newalgebraicpropertiesofmiddlebolloopsii |
_version_ |
1718439891298156544 |