New algebraic properties of middle Bol loops II

Abstract A loop (Q, ·, \, /) is called a middle Bol loop (MBL) if it obeys the identity x(yz\x)=(x/z)(y\x). To every MBL corresponds a right Bol loop (RBL) and a left Bol loop (LBL). In this paper, some new algebraic properties of a middle Bol loop are established in a different style. Some new meth...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jaiyéolá,T. G., David,S. P., Oyebola,O. O.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000100085
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000100085
record_format dspace
spelling oai:scielo:S0716-091720210001000852021-01-26New algebraic properties of middle Bol loops IIJaiyéolá,T. G.David,S. P.Oyebola,O. O. Bol loops Middle Bol loops Moufang loops Abstract A loop (Q, ·, \, /) is called a middle Bol loop (MBL) if it obeys the identity x(yz\x)=(x/z)(y\x). To every MBL corresponds a right Bol loop (RBL) and a left Bol loop (LBL). In this paper, some new algebraic properties of a middle Bol loop are established in a different style. Some new methods of constructing a MBL by using a non-abelian group, the holomorph of a right Bol loop and a ring are described. Some equivalent necessary and sufficient conditions for a right (left) Bol loop to be a middle Bol loop are established. A RBL (MBL, LBL, MBL) is shown to be a MBL (RBL, MBL, LBL) if and only if it is a Moufang loop.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.1 20212021-02-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000100085en10.22199/issn.0717-6279-2021-01-0006
institution Scielo Chile
collection Scielo Chile
language English
topic Bol loops
Middle Bol loops
Moufang loops
spellingShingle Bol loops
Middle Bol loops
Moufang loops
Jaiyéolá,T. G.
David,S. P.
Oyebola,O. O.
New algebraic properties of middle Bol loops II
description Abstract A loop (Q, ·, \, /) is called a middle Bol loop (MBL) if it obeys the identity x(yz\x)=(x/z)(y\x). To every MBL corresponds a right Bol loop (RBL) and a left Bol loop (LBL). In this paper, some new algebraic properties of a middle Bol loop are established in a different style. Some new methods of constructing a MBL by using a non-abelian group, the holomorph of a right Bol loop and a ring are described. Some equivalent necessary and sufficient conditions for a right (left) Bol loop to be a middle Bol loop are established. A RBL (MBL, LBL, MBL) is shown to be a MBL (RBL, MBL, LBL) if and only if it is a Moufang loop.
author Jaiyéolá,T. G.
David,S. P.
Oyebola,O. O.
author_facet Jaiyéolá,T. G.
David,S. P.
Oyebola,O. O.
author_sort Jaiyéolá,T. G.
title New algebraic properties of middle Bol loops II
title_short New algebraic properties of middle Bol loops II
title_full New algebraic properties of middle Bol loops II
title_fullStr New algebraic properties of middle Bol loops II
title_full_unstemmed New algebraic properties of middle Bol loops II
title_sort new algebraic properties of middle bol loops ii
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000100085
work_keys_str_mv AT jaiyeolatg newalgebraicpropertiesofmiddlebolloopsii
AT davidsp newalgebraicpropertiesofmiddlebolloopsii
AT oyebolaoo newalgebraicpropertiesofmiddlebolloopsii
_version_ 1718439891298156544