Relating centralities in graphs and the principal eigenvector of its distance matrix

Abstract In this work a new centrality measure of graphs is presented, based on the principal eigenvector of the distance matrix: spectral closeness. Using spectral graph theory, we show some of its properties and we compare the results of this new centrality with closeness centrality. In particular...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: da Silva Jr.,Celso M., Del-Vecchio,Renata R., Monteiro,Bruno B.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000100217
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract In this work a new centrality measure of graphs is presented, based on the principal eigenvector of the distance matrix: spectral closeness. Using spectral graph theory, we show some of its properties and we compare the results of this new centrality with closeness centrality. In particular, we prove that for threshold graphs these two centralities always coincide. In addition we construct an infinity family of graphs for which these centralities never coincide.