Relating centralities in graphs and the principal eigenvector of its distance matrix

Abstract In this work a new centrality measure of graphs is presented, based on the principal eigenvector of the distance matrix: spectral closeness. Using spectral graph theory, we show some of its properties and we compare the results of this new centrality with closeness centrality. In particular...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: da Silva Jr.,Celso M., Del-Vecchio,Renata R., Monteiro,Bruno B.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000100217
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000100217
record_format dspace
spelling oai:scielo:S0716-091720210001002172021-01-26Relating centralities in graphs and the principal eigenvector of its distance matrixda Silva Jr.,Celso M.Del-Vecchio,Renata R.Monteiro,Bruno B. Centrality Distance matrix Principal eigenvector Spectral closeness Abstract In this work a new centrality measure of graphs is presented, based on the principal eigenvector of the distance matrix: spectral closeness. Using spectral graph theory, we show some of its properties and we compare the results of this new centrality with closeness centrality. In particular, we prove that for threshold graphs these two centralities always coincide. In addition we construct an infinity family of graphs for which these centralities never coincide.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.1 20212021-02-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000100217en10.22199/issn.0717-6279-2021-01-0014
institution Scielo Chile
collection Scielo Chile
language English
topic Centrality
Distance matrix
Principal eigenvector
Spectral closeness
spellingShingle Centrality
Distance matrix
Principal eigenvector
Spectral closeness
da Silva Jr.,Celso M.
Del-Vecchio,Renata R.
Monteiro,Bruno B.
Relating centralities in graphs and the principal eigenvector of its distance matrix
description Abstract In this work a new centrality measure of graphs is presented, based on the principal eigenvector of the distance matrix: spectral closeness. Using spectral graph theory, we show some of its properties and we compare the results of this new centrality with closeness centrality. In particular, we prove that for threshold graphs these two centralities always coincide. In addition we construct an infinity family of graphs for which these centralities never coincide.
author da Silva Jr.,Celso M.
Del-Vecchio,Renata R.
Monteiro,Bruno B.
author_facet da Silva Jr.,Celso M.
Del-Vecchio,Renata R.
Monteiro,Bruno B.
author_sort da Silva Jr.,Celso M.
title Relating centralities in graphs and the principal eigenvector of its distance matrix
title_short Relating centralities in graphs and the principal eigenvector of its distance matrix
title_full Relating centralities in graphs and the principal eigenvector of its distance matrix
title_fullStr Relating centralities in graphs and the principal eigenvector of its distance matrix
title_full_unstemmed Relating centralities in graphs and the principal eigenvector of its distance matrix
title_sort relating centralities in graphs and the principal eigenvector of its distance matrix
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000100217
work_keys_str_mv AT dasilvajrcelsom relatingcentralitiesingraphsandtheprincipaleigenvectorofitsdistancematrix
AT delvecchiorenatar relatingcentralitiesingraphsandtheprincipaleigenvectorofitsdistancematrix
AT monteirobrunob relatingcentralitiesingraphsandtheprincipaleigenvectorofitsdistancematrix
_version_ 1718439894155526144