Relating centralities in graphs and the principal eigenvector of its distance matrix
Abstract In this work a new centrality measure of graphs is presented, based on the principal eigenvector of the distance matrix: spectral closeness. Using spectral graph theory, we show some of its properties and we compare the results of this new centrality with closeness centrality. In particular...
Guardado en:
Autores principales: | da Silva Jr.,Celso M., Del-Vecchio,Renata R., Monteiro,Bruno B. |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000100217 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New bounds on the distance Laplacian and distance signless Laplacian spectral radii
por: Díaz,Roberto C., et al.
Publicado: (2019) -
Universal adjacency spectrum of zero divisor graph on the ring and its complement
por: Saraswati Bajaj, et al.
Publicado: (2021) -
An upper bound on the largest signless Laplacian of an odd unicyclic graph
por: Collao,Macarena, et al.
Publicado: (2012) -
School Principals’ Evaluation of the Effectiveness of Employing Distance Learning Tools by Teachers
por: Thaer A.R. Abukhalil, et al.
Publicado: (2021) -
Evaluation method of node importance in temporal satellite networks based on time slot correlation
por: Rui Xu, et al.
Publicado: (2021)