A study of topological structures on equi-continuous mappings

Abstract Function space topologies are developed for EC(Y,Z), the class of equi-continuous mappings from a topological space Y to a uniform space Z. Properties such as splittingness, admissibility etc. are defined for such spaces. The net theoretic investigations are carried out to provide character...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gupta,Ankit, Sarma,Ratna Dev
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200335
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000200335
record_format dspace
spelling oai:scielo:S0716-091720210002003352021-04-03A study of topological structures on equi-continuous mappingsGupta,AnkitSarma,Ratna Dev Topology Uniform space Function spaces Equi-continuous mappings Net convergence. Abstract Function space topologies are developed for EC(Y,Z), the class of equi-continuous mappings from a topological space Y to a uniform space Z. Properties such as splittingness, admissibility etc. are defined for such spaces. The net theoretic investigations are carried out to provide characterizations of splittingness and admissibility of function spaces on EC(Y,Z). The open-entourage topology and pointtransitive-entourage topology are shown to be admissible and splitting respectively. Dual topologies are defined. A topology on EC(Y,Z) is found to be admissible (resp. splitting) if and only if its dual is so.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.2 20212021-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200335en10.22199/issn.0717-6279-2021-02-0020
institution Scielo Chile
collection Scielo Chile
language English
topic Topology
Uniform space
Function spaces
Equi-continuous mappings
Net convergence.
spellingShingle Topology
Uniform space
Function spaces
Equi-continuous mappings
Net convergence.
Gupta,Ankit
Sarma,Ratna Dev
A study of topological structures on equi-continuous mappings
description Abstract Function space topologies are developed for EC(Y,Z), the class of equi-continuous mappings from a topological space Y to a uniform space Z. Properties such as splittingness, admissibility etc. are defined for such spaces. The net theoretic investigations are carried out to provide characterizations of splittingness and admissibility of function spaces on EC(Y,Z). The open-entourage topology and pointtransitive-entourage topology are shown to be admissible and splitting respectively. Dual topologies are defined. A topology on EC(Y,Z) is found to be admissible (resp. splitting) if and only if its dual is so.
author Gupta,Ankit
Sarma,Ratna Dev
author_facet Gupta,Ankit
Sarma,Ratna Dev
author_sort Gupta,Ankit
title A study of topological structures on equi-continuous mappings
title_short A study of topological structures on equi-continuous mappings
title_full A study of topological structures on equi-continuous mappings
title_fullStr A study of topological structures on equi-continuous mappings
title_full_unstemmed A study of topological structures on equi-continuous mappings
title_sort study of topological structures on equi-continuous mappings
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200335
work_keys_str_mv AT guptaankit astudyoftopologicalstructuresonequicontinuousmappings
AT sarmaratnadev astudyoftopologicalstructuresonequicontinuousmappings
AT guptaankit studyoftopologicalstructuresonequicontinuousmappings
AT sarmaratnadev studyoftopologicalstructuresonequicontinuousmappings
_version_ 1718439896597659648