On ideal sumset labelled graphs

Abstract The sumset of two sets A and B of integers, denoted by A + B, is defined as A+B = {a+b : a ∈ A, b ∈ B}. Let X be a non-empty set of non-negative integers. A sumset labelling of a graph G is an injective function f : V (G) → P(X) − {∅} such t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mathai,Jincy P., Naduvath,Sudev, Sreedharan,Satheesh
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200371
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The sumset of two sets A and B of integers, denoted by A + B, is defined as A+B = {a+b : a ∈ A, b ∈ B}. Let X be a non-empty set of non-negative integers. A sumset labelling of a graph G is an injective function f : V (G) → P(X) − {∅} such that the induced function f + : E(G) → P(X)−{∅} is defined by f+(uv) = f(u) +f(v) ∀uv ∈ E(G). In this paper, we introduce the notion of ideal sumset labelling of graph and discuss the admissibility of this labelling by certain graph classes and discuss some structural characterization of those graphs.