Some remarks on fuzzy infi topological spaces

Abstract Induced fuzzy infi topological space is already introduced by Saha and Bhattacharya [Saha A.K., Bhattacharya D. 2015, Normal Induced Fuzzy Topological Spaces, Italian Journal of Pure and Applied Mathematics, 34, 45-56]. In this paper for the said space, we further analyse some properties vi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Das,Birojit, Bhattacharya,Baby, Kumar Saha,Apu
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200399
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172021000200399
record_format dspace
spelling oai:scielo:S0716-091720210002003992021-04-03Some remarks on fuzzy infi topological spacesDas,BirojitBhattacharya,BabyKumar Saha,Apu Fuzzy infi topological space Fuzzy I-continuity Fuzzy infi open mappings Fuzzy infi closed mappings Product fuzzy infi topology Abstract Induced fuzzy infi topological space is already introduced by Saha and Bhattacharya [Saha A.K., Bhattacharya D. 2015, Normal Induced Fuzzy Topological Spaces, Italian Journal of Pure and Applied Mathematics, 34, 45-56]. In this paper for the said space, we further analyse some properties viz. fuzzy I-continuity, fuzzy infi open mappings and fuzzy infi closed mappings etc. Also we study product fuzzy infi topological space and establish some results concerned with it.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.40 n.2 20212021-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200399en10.22199/issn.0717-6279-2021-02-0024
institution Scielo Chile
collection Scielo Chile
language English
topic Fuzzy infi topological space
Fuzzy I-continuity
Fuzzy infi open mappings
Fuzzy infi closed mappings
Product fuzzy infi topology
spellingShingle Fuzzy infi topological space
Fuzzy I-continuity
Fuzzy infi open mappings
Fuzzy infi closed mappings
Product fuzzy infi topology
Das,Birojit
Bhattacharya,Baby
Kumar Saha,Apu
Some remarks on fuzzy infi topological spaces
description Abstract Induced fuzzy infi topological space is already introduced by Saha and Bhattacharya [Saha A.K., Bhattacharya D. 2015, Normal Induced Fuzzy Topological Spaces, Italian Journal of Pure and Applied Mathematics, 34, 45-56]. In this paper for the said space, we further analyse some properties viz. fuzzy I-continuity, fuzzy infi open mappings and fuzzy infi closed mappings etc. Also we study product fuzzy infi topological space and establish some results concerned with it.
author Das,Birojit
Bhattacharya,Baby
Kumar Saha,Apu
author_facet Das,Birojit
Bhattacharya,Baby
Kumar Saha,Apu
author_sort Das,Birojit
title Some remarks on fuzzy infi topological spaces
title_short Some remarks on fuzzy infi topological spaces
title_full Some remarks on fuzzy infi topological spaces
title_fullStr Some remarks on fuzzy infi topological spaces
title_full_unstemmed Some remarks on fuzzy infi topological spaces
title_sort some remarks on fuzzy infi topological spaces
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200399
work_keys_str_mv AT dasbirojit someremarksonfuzzyinfitopologicalspaces
AT bhattacharyababy someremarksonfuzzyinfitopologicalspaces
AT kumarsahaapu someremarksonfuzzyinfitopologicalspaces
_version_ 1718439898093977600