Implicative filters in quasi-ordered residuated systems

Abstract The concept of residuated relational systems ordered under a quasiorder relation was introduced in 2018 by S. Bonzio and I. Chajda as a structure 𝒜 = 〈A, ·,→, 1, R〉, where (A, ·) is a commutative monoid with the identity 1 as the top element in this...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Romano,Daniel A.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200417
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The concept of residuated relational systems ordered under a quasiorder relation was introduced in 2018 by S. Bonzio and I. Chajda as a structure 𝒜 = 〈A, ·,→, 1, R〉, where (A, ·) is a commutative monoid with the identity 1 as the top element in this ordered monoid under a quasi-order R. The author introduced and analyzed the concepts of filters in this type of algebraic structures. In this article, as a continuation of previous author’s research, the author introduced and analyzed the concept of implicative filters in quasi-ordered residuated systems.