The forcing total monophonic number of a graph
Abstract For a connected graph G = (V, E) of order at least two, a subset T of a minimum total monophonic set S of G is a forcing total monophonic subset for S if S is the unique minimum total monophonic set containing T . A forcing total monophonic subset for S of minimum cardinality is a minimum f...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172021000200561 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract For a connected graph G = (V, E) of order at least two, a subset T of a minimum total monophonic set S of G is a forcing total monophonic subset for S if S is the unique minimum total monophonic set containing T . A forcing total monophonic subset for S of minimum cardinality is a minimum forcing total monophonic subset of S. The forcing total monophonic number f tm (S) in G is the cardinality of a minimum forcing total monophonic subset of S. The forcing total monophonic number of G is f tm (G) = min{f tm (S)}, where the minimum is taken over all minimum total monophonic sets S in G. We determine bounds for it and find the forcing total monophonic number of certain classes of graphs. It is shown that for every pair a, b of positive integers with 0 ≤ a < b and b ≥ a+4, there exists a connected graph G such that f tm (G) = a and m t (G) = b. |
---|